The present subject matter relates generally to wash racks for dishwasher appliances and methods for forming the same.
Dishwasher appliances generally include at least one dish rack for holding dishes, such as plates, bowls, utensils, glassware, pots, pans, and the like. Certain dish racks are constructed of a plurality of interconnected wires that form a basket. Tines are mounted within the basket for supporting the various dishes. The wires and tines are commonly made of metal, such as steel, covered with a protective coating, such as nylon or polyvinyl chloride (PVC). The protective coating provides a physical barrier over the wires and tines to protect the metal from exposure to water and fluid additives, such as detergents and rinse aids, within the dishwasher. As a result, the protective coating assists with preventing corrosion of the dish rack.
Constructing dish racks with metal wires and tines has drawbacks. For example, the protective coating does not always provide a sufficient barrier, and the metal wires and tines of the dish rack can rust in the harsh dishwasher environment. The protective coating can be compromised in a variety of ways, including aging of the protective material or physical damage, such as scratching, which can occur during loading of the dishwasher, especially when knives and other sharp items are loaded into the dishwasher. As another example, deficiencies in the coating process can lead to non-uniform, defective coatings that are susceptible to corrosion. Once corrosion initiates, the destructive process tends to propagate along the wires.
Constructing dish racks with metal wires and tines can also limit the size and shape of the basket. In particular, lateral metal wires are generally bent into a desired shaped, and straight transverse wires are then welded to the bent lateral metal wires to form the wash basket. Thus, a cross-section of the basket is generally constant from front to back, and evenly applying wash fluid to articles with the basket can be difficult due to such shaping.
Accordingly, a wash rack for a dishwasher appliance with features for limiting corrosion of the wash rack would be useful. In addition, a wash rack with features for assisting with supporting articles within the dish rack such that the articles are directed towards a spray body of the dishwasher appliance would be useful.
The present subject matter provides a dishwasher appliance with a wash rack positioned within a wash chamber of a tub above a spray body. The wash rack includes a plurality of integrally formed elongated members that form a bottom wall and a pair of side walls. The integrally formed elongated members of the bottom wall form a pair of container support portions and a well portion, and the well portion of the bottom wall is positioned below the container support portions of the pair of container support portions. A related method for forming a wash rack for a dishwasher appliance is also provided. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In a first exemplary embodiment, a dishwasher appliance defining a vertical direction, a lateral direction and a transverse direction that are mutually perpendicular is provided. The dishwasher includes a tub that defines a wash chamber. A spray body is positioned within the wash chamber of the tub. A wash rack is positioned within the wash chamber of the tub above the spray body along the vertical direction. The wash rack includes a plurality of integrally formed elongated members. The integrally formed elongated members of the wash rack form a bottom wall, a pair of first side walls and a pair of second side walls. The side walls of the pair of first side walls spaced apart from each other along the lateral direction and extending upwardly from the bottom wall of the wash rack along the vertical direction. The side walls of the pair of second side walls spaced apart from each other along the transverse direction and extending upwardly from the bottom wall of the wash rack along the vertical direction. The integrally formed elongated members of the bottom wall form a pair of container support portions and a well portion. Each container support portion of the pair of container support portions positioned adjacent a respective one of the pair of first side walls. The well portion of the bottom wall positioned between the container support portions of the pair of container support portions along the lateral direction. The well portion of the bottom wall also positioned below the container support portions of the pair of container support portions along the vertical direction.
In a second exemplary embodiment, a method for forming a unitary wash rack for a dishwasher appliance is provided. The method includes establishing three-dimensional information of the unitary wash rack and converting the three-dimensional information of the unitary wash rack from the step of establishing into a plurality of slices. Each slice of the plurality of slices defining a respective cross-sectional layer of the unitary wash rack. The method also includes successively forming each cross-sectional layer of the unitary wash rack with an additive process. After the step of successively forming, (1) the unitary wash rack includes a plurality of integrally formed elongated members forming a bottom wall and a pair of side walls; (2) the side walls of the pair of side walls are spaced apart from each other and extend upwardly from the bottom wall; (3) the integrally formed elongated members of the bottom wall form a pair of container support portions and a well portion; (4) each container support portion of the pair of container support portions is positioned adjacent a respective one of the pair of side walls; (5) the well portion of the bottom wall is positioned between the container support portions of the pair of container support portions; and (6) the well portion of the bottom wall is also positioned below the container support portions of the pair of container support portions.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to the drawings,
As is understood, tub 104 may generally have a rectangular cross-section defined by various wall panels or walls. For example, as shown in
As particularly shown in
Additionally, dishwasher appliance 100 may also include a lower spray-arm assembly 130 that is configured to be rotatably mounted within a lower region 132 of wash chamber 106 directly above bottom wall 162 of tub 104 so as to rotate in relatively close proximity to rack assembly 122. As shown in
As is generally understood, lower and mid-level spray-arm assemblies 130 and 136 and upper spray assembly 138 may generally form part of a fluid circulation system 140 for circulating fluid (e.g., water and dishwasher fluid) within the tub 104. As shown in
Dishwasher appliance 100 may be further equipped with a controller 146 configured to regulate operation of dishwasher appliance 100. Controller 146 may generally include one or more memory devices and one or more microprocessors, such as one or more general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with a cleaning cycle. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor.
Controller 146 may be positioned in a variety of locations throughout dishwasher appliance 100. In the illustrated embodiment, controller 146 is located within a control panel area 148 of door 108, as shown in
It should be appreciated that the present subject matter is not limited to any particular style, model, or configuration of dishwasher appliance. The exemplary embodiment depicted in
As may be seen in
Wash rack 200 includes a bottom wall 220, a pair of first side walls 222 and a pair of second side walls 224. In particular, integrally formed elongated members 210 form bottom wall 220, first side walls 222 and second side walls 224 of wash rack 200. Thus, bottom wall 220, first side walls 222 and second side walls 224 may be continuous or unitary with one another. As may be seen in
As may be seen in
Integrally formed elongated members 210 are formed to match the shape of the surfaces shown in
As may be seen in
As may be seen in
Container support portions 230 and well portion 232 of bottom wall 220 are configured for supporting articles for washing and angling or orienting the articles towards a spray body, such as mid-level spray-arm assembly 136 (
Container support portions 230 may also be angled or oriented towards the spray body below wash rack 200 in order to facilitate introduction of wash fluid from the spray body into articles on container support portions 230. In particular, container support portions 230 may be positioned and oriented such that openings of containers on container support portions 230 are directed towards or face the spray body below wash rack 200. As an example, a cup, glass or other suitable container may be positioned on container support portion 230 with an opening of the cup, glass or other suitable container positioned on the container support portion 230. In such a manner, wash fluid from the spray body below wash rack 200 may flow through bottom wall 220 into the cup, glass or other suitable container via the opening of the cup, glass or other suitable container in order to clean the article.
In certain exemplary embodiments, container support portion 230 may be angled or oriented such that normal lines (shown with arrows NC) from upper surfaces of container support portions 230 define an angle, a, with a normal line (shown with arrows NW) from an upper surface of well portion 232 of bottom wall 220. The angle α may be any suitable angle. For example, the angle α may be no less than about ten degrees and no greater than about thirty degrees. In particular, the angle α may be about twenty degrees. As used herein, the term “about” or “substantially” means within ten degrees of the stated angle when used in the context of angles. As may be seen in
As may be seen in
In addition, first side walls 222, e.g., integrally formed elongated members 210 at first side walls 222, form or define a plurality of container support cavities 236. Container support cavities 236 are sized for receiving a container supported on container support portions 230. For example, a sidewall of a container of container support portion 230 may be received within container support cavity 236 such that the sidewall of the cavity rests on first side wall 222 at container support cavity 236. Container support cavities 236 may have arcuately shaped integrally formed elongated members 210 (e.g., along the transverse direction T) and/or conically shaped integrally formed elongated members 210. Thus, first side walls 222 may be scalloped to from container support cavities 236.
Accordingly, at step 810, three-dimensional information of wash rack 200 is determined. As an example, a model or prototype of wash rack 200 may be scanned to determine the three-dimensional information of wash rack 200 at step 810. As another example, a model of wash rack 200 may be constructed using a suitable CAD program to determine the three-dimensional information of wash rack 200 at step 810. At step 820, the three-dimensional information is converted into a plurality of slices that each defines a cross-sectional layer of wash rack 200. As an example, the three-dimensional information from step 810 may be divided into equal sections or segments, e.g., along a central axis of wash rack 200 or any other suitable axis. Thus, the three-dimensional information from step 810 may be discretized at step 820, e.g., in order to provide planar cross-sectional layers of wash rack 200.
After step 820, wash rack 200 is fabricated using the additive process, or more specifically each layer is successively formed at step 830, e.g., by applying heat to melt and fuse a thermoplastic or polymerizing a resin using laser energy. The layers may have any suitable size. For example, each layer may have a size between about five ten-thousandths of an inch and about one thousandths of an inch. Wash rack 200 may be fabricated using any suitable additive manufacturing machine as step 830. For example, any suitable inkjet printer or laserjet printer may be used at step 830.
Utilizing method 800, wash rack 200 may have fewer components and/or joints than known wash racks. In addition, wash rack 200 may be formed with container support portions 230 and well portion 232 that assist with orienting articles within wash rack 200 towards a spray body below wash rack 200 and thereby facilitate cleaning of the articles with wash fluid form the spray body. Also, wash rack 200 may be less prone to breaks and/or be stronger when formed with method 800. Further, wash rack 200 may be constructed without metal wires that are susceptible to corrosion or rusting.
In addition, utilizing method 800 may assist with forming bottom wall 220 such that bottom wall 220 is tiered or stepped, e.g., along the vertical direction V, after step 830. Thus, the lowest point of bottom wall 220 may correspond to a central portion of bottom wall 220, e.g., along the lateral direction V, and other portions of bottom wall 220 may be successively raised or elevated to provide additional space along the vertical direction V, after step 830. Further, utilizing method 800, bottom wall 220 may be angled or oriented to such that containers on bottom wall 220 are angled or oriented towards the spray body below wash rack 200 after step 830.
Such shaping of bottom wall 220 may assist with facilitating washing of articles on bottom wall 220. For example, the spray body may be a spray arm that rotates around an axis of rotation below bottom wall 220. Thus, the spray body may rotate in a generally circular pattern, e.g., in a plane that is perpendicular to the vertical direction V, below bottom wall 220 during operation of dishwasher appliance 100. Conversely, wash rack 200 may have a generally square shape, e.g., in a plane that is perpendicular to the vertical direction V. To conserve space along the vertical direction V below wash rack 200, the spray body may be positioned close, e.g., as close as possible, to bottom wall 220 along the vertical direction V. Due to the shape of wash rack 200 relative to the rotation pattern of the spray body and the close proximity of the spray body to wash rack 200, directing wash fluid from the spray body towards corners 226 of wash rack 200 and into articles at corners 226 of wash rack 200 can be difficult, particularly tall glasses or container positioned at corners 226 of wash rack 200. Angling jets of wash fluid from the spray body towards the corners 226 of wash rack 200 offers limited effectiveness due angling required to reach corners 226 of wash rack 200 and potential blocking of the wash fluid jets by other articles in the wash rack 200.
Positioning container support portions 230 above well portion 232 and/or angling or orienting container support portions 230 towards the spray body below wash rack 200 may assist with directing wash fluid from the spray body rotating below wash rack 200 into the articles supported on bottom wall 220 of wash rack 200. Thus, method 800 may assist with forming wash rack 200 such that a height of outer portions of bottom wall 220 along the vertical direction V relative to the spray body below wash rack 200 is traded (e.g., increased) in order to facilitate impingement of wash fluid from the spray body onto the articles at the outer portions of bottom wall 220. In particular, the height of outer portions of bottom wall 220 along the vertical direction V relative to the spray body below wash rack 200 may be selected depending on radial distance from the axis of rotation of the spray body below wash rack 200. For example, the height of outer portions of bottom wall 220 along the vertical direction V relative to the spray body below wash rack 200 may be greatest at the portions of bottom wall 220 positioned at a greatest radial distance from the axis of rotation of the spray body below wash rack 200, e.g., at corners 226 of wash rack 200. In such manner, wash fluid application from the spray body below wash rack 200 may be improved at corners 226 of wash rack 200.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.