The present invention is an improvement upon a previous invention and relates generally to pillows and more particularly, but not exclusively, to pillows that can be turned inside out to expose the filling material for much quicker, thorough and easier washing and drying. Specifically that can be of one single containment with an outer shell, single side of foam backing with a plurality of foam pieces cut into similar or various sizes, or can include an outer shell case with a polyurethane foam backing and an inner shell case that includes a plurality of foam pieces cut into similar or various sizes.
Today, people use many different types of pillows to try and get a good night's sleep. These various types of pillows employ different materials, textures, and comfort levels to account for variations in what people prefer in a pillow. But nearly all pillows have one thing in common, microorganism growth and allergen accumulation.
The hospitality industry of hotels and motels are beginning to cater to the real problems of this. They have moved toward down and feather alternative pillows as I high percentage of use and many are not only washing the pillow covers, but washing the pillow itself. Here lies the problem: Pillows are thick and difficult to wash. Even one or two hotel pillows can engulf a commercial washer and dryer and take hours to dry, while only really washing the outside of the case. It is difficult for the air and water to get through the fabric and thick cotton ball types of fillings. Many pillows cannot even be washed.
Many pillow makers have concentrated on comfort as a leading factor in developing pillows, rather than managing microorganism growth. One technique for managing pillow microorganisms is to have the pillow cleaned. However, current pillow designs are often difficult to clean, which results in un-effective microorganism management. Some pillow designs make claims of being washable in conventional washing machines. Unfortunately, most of these previous washable pillows suffer from similar problems, such as: 1) unable to effectively get hot water and air to penetrate to the core of the pillow in such a manner to kill the bacteria and molds, while giving comfort and quality that is essential to sleep; 2) failing to allow a pillow to wash and dry quick enough to finish in one cycle; 3) requiring the use two pillows to balance a washing machine, or the use other items (e.g., tennis balls) to beat the pillow clean; and 4) only partially drying the center of the pillow.
Often, pillows with regular polyester, feathers, and/or down fill are difficult to dry, let alone wash. Similarly, pillow cases made out of higher density materials (e.g., 300, 200 or 100 count cotton, synthetic, blended, or other tightly woven materials) typically hamper the penetrability of water and air to the center of the pillow.
Some companies have turned to chemicals along with various materials to try and solve some of the problems with washing pillows. However, these chemicals/materials have a tendency to settle and make the pillow uncomfortable. Also, some companies have tried to make pillows having foam materials with washable cases. But many times the foam can only be spot cleaned or dry cleaned. Yet other products that are made of plastics can be brittle, and often do not have the right combination of cushion, conformability, shape adjustability, and high quality cleaning capability. Previously, the predominant outlook of pillow cleaning has been that pillows can only be cleaned on the surface and not deep inside. What is needed is a pillow which offers superior cushioning, form fit, overall shape and support, is easy to thoroughly clean, and the ability of the user to reach inside the core to really feel that it is dry. Thus, it is with respect to these and other considerations that the invention has been made.
Non-limiting and non-exhaustive embodiments are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
Various embodiments are described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific aspects and embodiments by which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter of the invention. It will be apparent, however, to one skilled in the art that the various embodiments may be practiced without some of these specific details or with additional details not shown. The embodiments may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the embodiments to those skilled in the art. Among other things, the various embodiments may be methods, systems, or apparatuses. The following detailed description should, therefore, not be limiting.
Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise. The term “herein” refers to the specification, claims, and drawings associated with the current application. The phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment, though it may. Furthermore, the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment, although it may. Thus, as described below, various embodiments of the invention may be readily combined, without departing from the scope or spirit of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope is defined only by the appended claims, along with the full scope of legal equivalents to which such claims are entitled.
In addition, as used herein, the term “or” is an inclusive “or” operator, and is equivalent to the term “and/or,” unless the context clearly dictates otherwise. The term “based on” is not exclusive and allows for being based on additional factors not described, unless the context clearly dictates otherwise. In addition, throughout the specification, the meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and “on.”
The following briefly describes embodiments of the invention in order to provide a basic understanding of some aspects of the invention. This brief description is not intended as an extensive overview. It is not intended to identify key or critical elements, or to delineate or otherwise narrow the scope. Its purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
Briefly stated, various embodiments are directed to a pillow with a reversible core or a removable core that includes a plurality of cut foam pieces of various or similar size. The pillow may include an outer shell case or and an outer shell case and an inner shell case (i.e., the removable core). The outer shell case may be made of a plurality of layers, including a backing layer positioned between an external layer and an internal layer. In some embodiments, the internal layer may comprise an open mesh material and the backing layer may comprise a foam material. The inner shell case may be removably inserted into the outer shell case and the inner shell case may comprise another open mesh material. In some embodiments, the inner shell case and the internal layer of the outer shell case can be made of the same material (e.g., nylon or polyester). Also, a plurality of foam pieces may be disposed in the inner shell case. In some embodiments, the foam pieces may be made of same or different foam as the backing layer f the outer shell case. In various embodiments, the plurality of foam pieces may be sharply cut polyurethane foam. The foam pieces may be of similar of different sizes and may be of any similar or different shapes (e.g., rectangular/bar-shaped, square/cubic, elongated, triangular/pyramidal, parallelepiped, spherical, half-hemispheres, trapezoidal, tubes/cylindrical, conical, any other regular or non-regular three-dimensional shapes, or any combination thereof, and may be solid, hollow, perforated, or any combination thereof.).
In some embodiments, the shell case may be of a single system. The pillow may include various layers or only a foam backing. In one embodiment, the shell case has a single foam backing on the inside and a plurality of foam pieces of various or similar sizes between the foam backing and mesh netting. The embodiment has a single fabric layer covering the mesh netting directly. The shell case can be made of the same material for the top exterior layer and the bottom exterior layer or different fabric materials to cover the mesh and the foam layers. The case will have an opening at one end that is covered by a fabric flap. The flap can be of various lengths, but will be reversible to open the pillow to the center core and expose the plurality of foam pieces through the mesh netting. In various embodiments, the plurality of foam pieces may be sharply cut polyurethane foam. The foam pieces may be of similar of different sizes and may be of any similar or different shapes (e.g., rectangular/bar-shaped, square/cubic, elongated, triangular/pyramidal, parallelepiped, spherical, half-hemispheres, trapezoidal, tubes/cylindrical, conical, any other regular or non-regular three-dimensional shapes, or any combination thereof, and may be solid, hollow, perforated, or any combination thereof.).
In various embodiments, the outer shell case may be a protective case and the inner cases inserted into the sleeves of the protective case may be complete pillows that employ embodiments described herein—e.g., each separate inner case may include an outer shell case (that includes at least three layers) and a removable inner shell case (that includes a plurality of foam pieces).
Various embodiments are described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific aspects and embodiments by which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter of the invention. It will be apparent, however, to one skilled in the art that the various embodiments may be practiced without some of these specific details or with additional details not shown. The embodiments may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the embodiments to those skilled in the art. Among other things, the various embodiments may be methods, systems, or apparatuses. The following detailed description should, therefore, not be limiting.
Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise. The term “herein” refers to the specification, claims, and drawings associated with the current application. The phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment, though it may. Furthermore, the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment, although it may. Thus, as described below, various embodiments of the invention may be readily combined, without departing from the scope or spirit of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope is defined only by the appended claims, along with the full scope of legal equivalents to which such claims are entitled.
In addition, as used herein, the term “or” is an inclusive “or” operator, and is equivalent to the term “and/or,” unless the context clearly dictates otherwise. The term “based on” is not exclusive and allows for being based on additional factors not described, unless the context clearly dictates otherwise. In addition, throughout the specification, the meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and “on.”
The following briefly describes embodiments of the invention in order to provide a basic understanding of some aspects of the invention. This brief description is not intended as an extensive overview. It is not intended to identify key or critical elements, or to delineate or otherwise narrow the scope. Its purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
Briefly stated, various embodiments are directed to a pillow with a reversible core or removable core that includes a plurality of cut foam pieces of various or similar size. The pillow may include an outer shell case and an inner shell case (i.e., the removable core). The outer shell case may be made of a plurality of layers, including a backing layer positioned between an external layer and an internal layer. In some embodiments, the internal layer may comprise an open mesh material and the backing layer may comprise a foam material. The inner shell case may be removed or inserted into the outer shell case and the inner shell case may comprise another open mesh material. In some embodiments, the inner shell case and the internal layer of the outer shell case can be made of the same material (e.g., nylon or polyester). Also, a plurality of foam pieces may be disposed in the inner shell case. In some embodiments, the foam pieces may be made of same or different foam as the backing layer of the outer shell case. In various embodiments, the plurality of foam pieces may be sharply cut polyurethane foam. The foam must not be shredded or it will leak out the mesh casing. The foam pieces may be of similar or different sizes and may be of any similar or different shapes (e.g., rectangular/bar-shaped, square/cubic, elongated, triangular/pyramidal, parallelepiped, spherical, half-hemispheres, trapezoidal, tubes/cylindrical, conical, any other regular or non-regular three-dimensional shapes, or any combination thereof, and may be solid, hollow, perforated, or any combination thereof.).
In some embodiments, the outer shell case may include a first sleeve, a second sleeve and a plurality of inner shell cases may be inserted into the outer shell case. In other embodiments, the outer shell case is singularly connected to the pillow core with a single opening at the end. The opening is covered by a fabric flap that is of the same material as the shell or of a different fabric for the purpose of comfort to the skin. When the flap is reversed to open the pillow and reveal the core with the mesh covering the plurality of foam pieces, the pillow case can be reversed by reaching into the core, grabbing onto the mesh netting and pulling the core from the end and out the opening. Once reversed, the various foam pieces will be exposed for the purpose of washing and drying quickly. The exposed foam pieces are no longer blocked by a high thread count fabric and water and air can move through without the usual obstructions that occur with fabrics with medium or high thread counts. In various embodiments, the outer shell case may be a protective case and the inner cases inserted into the the protective case may be of complete pillows that employ embodiments described herein—e.g., a singular pillow with a reversible core or a separate inner case that includes an outer shell case (that includes at least three layers) and a removable inner shell case (that includes a plurality of foam pieces).
The outer shell case can include external layer 202, backing layer 204, and internal layer 206. Inner shell case 208 may include a plurality of foam pieces 210 disposed therein with open spaces 212 between the foam pieces.
The outer shell case may include multiple layers, such as external layer 202, backing layer 204, and internal layer 206. In some embodiments, external layer 202 of the outer shell case may be made of nylon, polyester, or other open mesh material. External layer 202 may be sewn together with backing layer 204 and/or internal layer 206, such that backing layer 204 is between external layer 202 and internal layer 206, and that internal layer 206 is composed on the inside of the outer shell case and positioned between backing layer 204 of the outer shell case and inner shell case 208.
In various embodiments, external layer 202 may be made of material that may include perforations on the exterior of the case, which may be visible to the human eye (and not microscopic). Measurements of these perforations may vary from approximately 0.0254 millimeter to approximately 5.08 millimeter (or approximately 0.001 inches to 0.2 inches) in diameter (larger or smaller) depending the material of external layer 202 and/or equipment used to make the material. In various embodiments, the perforations may look patterned. The patterned perforations may include round holes, square holes, or other shapes. In at least one embodiment, the holes in the patterned perforations may be consistent with one another. In some embodiments, these perforations may increase water and air penetration into backing layer 204 and/or into inner shell case 208, which can increase the effectiveness of washing/drying cycles of a washing machine or dryer.
In at least one of various embodiments, backing layer 204 may be of similar thickness and/or similar density throughout. In some embodiments, backing layer 204 may be a cushion, which may be made of polyurethane foam. In some embodiments, the foam used as backing layer 204 may be open cell or completely open cell without membranes. Backing layer 204 may have a thickness between approximately 3.175 millimeters and 25.4 millimeters (or approximately 0.125 inches and 1.0 inches), but thinner or thicker foams or cushion materials may be used. In some embodiments, backing layer 204 may be made of a same or similar foam and/or same or similar thickness as foam pieces 210 included inside inner shell case 208, described herein.
In some embodiments, internal layer 206 of the outer shell case can be made of a mesh material with similar holes range from approximately 0.254 millimeter to 6.35 millimeters (or approximately 0.01 to 0.25 inches). This internal layer may be sewn (or otherwise attached) to backing layer 204 and/or external layer 202 such that the internal layer is inside of the outer shell case. This mesh can allow more thorough washing and drying of the foam backing layer. In some embodiments, internal layer 206 may be made of the same material as inner shell case 208.
The outer shell case, and in particular, backing layer 204, may provide many advantages. For example, it may hide the lumps caused by the plurality of foam pieces 210 inside inner shell case 208. Also, the outer shell case can allow inner shell case 208 to maintain a firmer embodiment than without a surrounding case. Another reason behind the outer shell case is aesthetic appeal. Many users appreciate and want an eye appealing look on their beds. If the outer shell case is too thin, or not at all there, lumps, may be readily visible, which can be annoying to some users. Backing layer 204 can also aide in the equal dispersion of foam pieces inside inner shell case 208. In some situations, the outer shell case can act as a balancer or equalizer to the mesh filled inner shell case. Because foam typically contains static electricity, and is usually more jagged than smooth under the microscope, small separate dispersed pieces can be held in position better with a counter balance of foam backing layer of the outer shell case than with a thin casing as used in most pillows.
In some embodiments, the outer shell case may include an aperture from width to width across the body of the pillow, which is further illustrated in
Inner shell case 208 may include a cavity that can hold a plurality of foam pieces 210 disposed inside inner shell case 208. In at least one of various embodiments, inner shell case 208 may be stitched or otherwise closed in an arrangement that prevents foam pieces 210 from being removed from or falling out of inner shell case 208. In other embodiments, inner shell case 208 may include an access passage that can allow a user and/or manufacturer to add or remove foam pieces or so the user can feel if the foam pieces are dry after washing. Such an access passage may include a zipper, buttons, Velcro, or other fastener, which is further illustrated below in conjunction with
In various embodiments, inner shell case 208 may be made of a mesh material. Examples of such mesh material may include, but are not limited to, nylon, polyester, or similar material. In at least one of various embodiments, the mesh material of the inner shell case may include a plurality of holes. In some embodiments, these holes may be greater than a size of most cotton sheets, but not large enough that foam pieces 210 can fall completely through inner shell case 208. In some embodiments, inner shell case 208 may be made of the same material that is used as internal layer 206 of the outer shell case.
In some embodiments, the various components of the pillow may be made of, include, or treated with hypoallergenic materials (e.g., to remove grasses or other pollens). In at least one such embodiment, the inner shell case and/or the outer shell case may include hypoallergenic materials. Some embodiments may include a hypoallergenic assembly of the casings and filling (e.g., the plurality of foam pieces). Similarly, some embodiments may include a hypoallergenic assembly of casings, the foam backing (e.g., backing layer 204), and other pillow features not described herein.
In other embodiments, the various components (e.g., materials/fabrics/foams) used to make the outer shell case, the inner shell case, and/or the foam pieces may be manufactured and/or treated with various healthful properties, e.g., anti-bacterial, anti-mold, anti-allergen, or the like. In some embodiments, the various pillow components may be treated after they are made—e.g., coating them with a chemical, pesticide, or other compound—which may provide some of these healthful properties.
In other embodiments, the pillow components may be manufactured with chemicals and/or compounds such that the healthful properties are directly built in. However, embodiments are not so limited and other methods and/or treatments may be utilized to provide additional healthful properties to the various pillow materials, fabrics, and/or foams.
As described herein, a plurality of foam pieces 210 may be disbursed inside inner shell case 208 of the pillow. The spaces 212 between foam pieces 210 can allow air to continually pass through the pillow keeping the pillow cool and dry. Similarly, these spaces 212 can allow hot water to pass easily through the pillow and in essence enable cleaning and/or scrubbing of the core of the pillow.
In some embodiments, the plurality of foam pieces 210 may be made from various types of foam with various different properties, some of which are described in more detail below in conjunction with
In at least one of the various embodiments, the plurality of foam pieces 210 may be formed or otherwise cut in similar or different shapes. In various embodiments, the plurality of foam pieces 210 may be of various shapes, including regular and/or irregular shapes. For example, foam pieces 210 may be rectangular/bar-shaped, square/cubic, elongated, triangular/pyramidal, parallelepiped, spherical, half-hemispherical, trapezoidal, tubes/cylindrical, conical, or the like, or and any other regular or non-regular three-dimensional shapes, or any combination thereof. In various embodiments, the foam pieces may be solid, hollow, perforated, or the like, or any combination thereof.
In various embodiments, foam pieces 210 may be of similar sizes. In some embodiments, each of the plurality of foam pieces 210 may have an average thickness of approximately 5.08 millimeters to 76.2 millimeters (or approximately 0.2 to 3 inches). However, embodiments are not so limited and other sizes/shapes may be employed. For example, in some embodiments, the plurality foam pieces may be rectangular with lengths between approximately 5.08 millimeters to 76.2 millimeters (or approximately 0.2 inches to 3 inches). In other embodiments, the plurality of foam pieces may be square (or cubic), ranging in size between approximately 6.35 millimeters to 76.2 millimeters (or approximately 0.25 inches to 3 inches) in height. In yet other embodiments, the plurality of foam pieces may have an elongation percentage of 90 to 110 percent. However, embodiments are not so limited and other sizes and/or variances in size may also be employed. In at least one of various embodiments, the sizes of the plurality of foam pieces may be selected such that they have similar group densities. In at least one embodiment, the size of foam pieces 210 may be selected based on their equal dispersion of density. For example, in some embodiments, three different sizes (and/or shapes) of foam pieces may be used such that ⅓ of the plurality of foam pieces may be a first size, ⅓ of the plurality of foam pieces may be a second size, and ⅓ of the plurality of foam pieces may be a third size (although other numbers of different sizes and/or shapes may be used in various other proportions).
The size and shapes of the foam pieces 210 may be selected by engineering judgment such that the plurality of foam pieces may be similar enough to randomly work together as pillow fill to substantially similar density throughout the pillow and to not create a lopsided pillow, while being large enough to be contained by inner shell case 208. In some embodiments, the size of the foam pieces may be selected for their average size, and the selected group may adhere to a selected standard deviation of size. In at least one such embodiment, a standard deviation of sizes for each foam size group may be selected to achieve a beneficial interrelationship between the foam pieces. In some embodiments, the foam pieces may be selected such that when combined into groups, a group of 100 pieces (or other suitable number of pieces) may be of similar density as a different group of 100 pieces, even though a size of each foam piece can vary approximately 5.08 millimeters to approximately 76.2 millimeters (or approximately 0.2 inch to approximately 3 inches). In at least one embodiment, one size may be used for maximum comfort and dispersion throughout the pillow. In any event, embodiments are not limited to foam pieces of a particular size or of a particular average size, and other sizes of foam pieces than what is described herein may be used within the present scope. Additionally, it is envisaged that various sizes and/or shapes of the plurality of foam pieces may be employed in various different ratios for different embodiments.
In yet other embodiments, the plurality of foam pieces 210 may be of any die cut solid shape, but not Frayed so that small particles can escape through the mesh material of the inner shell case. For example, in at least one of various embodiments, the plurality of foam pieces may be sharply cut to minimize foam crumbs from inside the pillow. In other embodiments, the plurality of foam pieces may be decisively precision cut as to leave zero (or almost zero) flaking of foam. In yet other embodiments, the plurality of foam pieces may be formed such that they leave zero residual foam (or predominantly zero) pieces that can escape through the mesh of the inner shell case. It should be recognized that other sizes and/or shapes of the foam pieces may vary depending on the size and/or shape of the pillow; the give, compressibility, or softness of a desired pillow; or the like.
In some embodiments, aperture 702 can allow the removal of the inner shell case (e.g., inner shell case 208 of
In at least one of the various embodiments, aperture 802 may be a zipper that is positioned longitudinally along at least one edge of pillow 800. In some embodiments, aperture 802 can allow the removal of the inner shell case (e.g., inner shell case 208 of
In some embodiments, outer shell case 800 may include a top and bottom face. Both the top and bottom face may each comprise an external layer (such as external layer 202 of
Inner shell case 900 may be substantially the same shape and size as the outer shell case (e.g., outer shell case 700 of
Outer shell case 1304 may be an embodiment of the outer shell case described in
In various embodiments, inner shell case 1302 may be inserted into outer shell case 1304, such that mesh face 1306 aligns with a mesh internal face of outer shell case 1304 (both of these mesh faces may comprise the same material or different materials). This arrangement may enable a foam backing of outer shell case 1304 to be opposite of a foam backing of inner shell 1302 (which is illustrated in
The outer shell case, and in particular, backing layer 1701, may provide many advantages. For example, it may hide the lumps caused by the plurality of foam pieces 1702 inside inner shell case 1700A. Another reason behind the outer shell case is aesthetic appeal. Many users appreciate and want an eye appealing look on their beds. If the outer shell case is too thin, or not at all there, lumps, may be readily visible, which can be annoying to some users. Backing layer 1701 can also aide in the equal dispersion of foam pieces inside inner mesh case 1703. In some situations, the outer shell case can act as a balancer or equalizer to the mesh filled inner shell case. Because foam typically contains static electricity, and is usually more jagged than smooth under the microscope, small separate dispersed pieces can be held in position better with a counter balance of foam backing layer of the outer shell case than with a thin casing as used in most pillows.
As illustrated, pillow 1800 may include outer shell case and a plurality of foam within a singular inner shell case 1803. In some embodiments, outer shell case 1801 and 1802 may be an embodiment of the outer shell case described in conjunction with
In various embodiments, inner shell cases of
In various embodiments, inner case 17A-17B may be removed from the outer shell case of
In some other embodiments, each of inner shell case in
In some embodiments, protective carrying case 2302 may be water resistant and/or water proof, or of other suitable material. In at least one of various embodiments, protective carrying case 2302 may be a cylindrical-like shape of suitable size (e.g., a diameter and length suitable to fit pillow 2310, when rolled up). Protective carrying case 2302 may include two open ends that oppose each other, e.g., open ends 2312 and 2314. In some embodiments, protective carrying case 2302 may include one or more drawstring (e.g., drawstrings 2304 and 2306) about each of open ends 2312 and 2314. By extending the drawstring away from the body of the protective carrying case, the corresponding end of the protective case may close. In some embodiments, if both drawstrings 2304 and 2306 are extended, they may be connected by latch 2308. Latch 2308 may be a clip or other suitable releasable attachment mechanism that can enable drawstrings 2304 and 2306 to be removably attached to each other, which may create a carrying strap for the protective case (and the pillow).
In various embodiments, a user may be enabled to insert pillow 2310 into protective carrying case 2302 by rolling the pillow into a cylindrical-like shape (e.g., as illustrated in
Example Foam
Various foams may be used as the plurality of foam pieces (e.g., foam pieces 210 of
The foam utilized in the pillow (e.g., plurality of foam pieces inside the inner shell case or for the backing layer of the outer shell case) may have various material properties including, but are not limited to: a density of from about approximately 16.06 kilograms per cubic meter to about 48.06 kilograms per cubic meter (or approximately 1 pound per cubic foot to about 3 pounds per cubic foot); and/or may have an indent force deflection at 10% to 50% of from about 10 to about 75 pounds; a compressive set percentage between 1 to 30 percent; a tensile strength of approximately 0.3515 to 3.164 kilograms per square centimeter (or approximately 5 to 45 pounds per square inch); a tear strength between approximately 0.294 kilograms per linear centimeter and 3.54 kilograms per linear centimeter (or approximately 0.25 and 3 pounds per linear inch); an elongation percentage of 100 percent or an elongation percentage ranging 90% to 120%; or other the like. Foams having other or additional mechanical properties also fall within the present specification. In various embodiments, foam properties may be established using the ASTM D-3574-86 test method.
As described herein, the plurality of foam pieces (e.g.., foam pieces 210 of
For example, a foam slice or foam block (foam 2602) may be inserted into a die cutting machine. In some embodiments, foam 2602 may be brought to the machine by way of rolls or other methods, rather than individual foam slices. Cutters 2604 may cut foam 2602 into foam pieces 2606, which may drop into container 2610. In some embodiments, foam pieces 2606 may be blown into the inner shell cases. For example, a vacuum may be applied to the machine outlet to collect the cut foam pieces and blow them into the inner shell cases. In some embodiments, a squirrel cage vacuum may be positioned directly into the opening of the inner shell case and blown into the case through an opening approximately 10.16 centimeters to 30.48 centimeters (or approximately 4 inches to 12 inches) wide. This opening may be the entire side of the case if necessary.
In other embodiments, the foam pieces may be funneled directly into an inner shell case (e.g., case 2608) using a funnel catch at the end of the die cutting assembly line, such as illustrated by of
In some embodiments, after the foam pieces are in the inner shell case, the case can be closed by sewing or zipper. In some embodiments, foam pieces may be inserted into an inner shell casing without a zipper and closed by sewing it closed. In other embodiments, foam pieces are inserted into an inner shell case with a zipper and closed by a zippered close. In at least one embodiment, the zipper end/flap/or tag may cut to prevent easy opening of the inner shell case. This zipper flap removal provides adds a layer of safety so that the foam pieces do not accidently fall out. In some embodiments, the zipper may still function, such that a paperclip or other household items may be used to release the zipper if needed (e.g., to add or remove some foam pieces to change the compressibility of the pillow).
In at least one of various embodiments, the tool used (such as illustrated in
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. Combinations of the above embodiments, and various embodiments, will be apparent to those of skill in the art upon reviewing the above description.
The above specification, examples, and information provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This utility application is an improvement of a current invention called “Washable pillows with multiple cases” by its inventor under the U.S. Pat. No. 8,959,693 that was issued Feb. 24, 2015. Filed as a provisional patent #62178213 on Apr. 3, 2015, it claims the benefits under 35 U. S. C. 120 and 119.
Number | Date | Country | |
---|---|---|---|
62178213 | Apr 2015 | US |