The present invention relates to a stacker apparatus that is cleanable, for use with a food slicing machine, such as a meat slicer or slicing station. The stacker of the present invention includes an upstream drive sprocket sleeve with a plurality of sprocket members, and a downstream unitary pulley sleeve with an equal number of integral pulley members that are aligned with the sprocket members so as to provide a plurality of spaced apart pulley-sprocket pairs. Each pulley-sprocket pair supports and engages a transport chains, such that the transport chains move synchronously to transport a slice of food thereon. Due to this simple construction, the stacker is very easy to clean and sanitize, so as to prevent food-born illness during subsequent uses of the stacker.
Food slicing machines are well known in the art and can be found in meat processors, sandwich shops, delis and grocery stores. Such slicing machines are often used to slice cheese and meats into individual slices of a predetermined thicknesses. As is known in the art, such slicing machines generally include a motorized slicing blade that receives and cuts the food, an input structure for supporting and feeding the food into the blade, a thickness control mechanism for determining the thickness of the food slices, and a discharge mechanism for expelling the food slices from the slicer.
In hi-throughput settings, such as a meat processing setting, the food slicer may be functionally engaged with or coupled to a food slice stacking device, so that food slices expelled from the slicer are received by the stacker and then transferred to a stacking station, where the slices can be stacked into a food slice stack. Such coupled slicers and stackers are often automated and synchronized, so that the coupled slicer and stacker cut and stack a pre-determined number of food slice stacks, wherein each stack includes a pre-determined number of food slices of a defined thickness.
Prior art stackers include a frame supporting several adjacent and vertically aligned downstream spring-loaded pulleys and an equal number of adjacent and vertically aligned upstream sprockets. Each spring-loaded pulley includes an individual pulley engaged with tensioning springs located withing an adjacent stainless steel housing. Each of the spring-loaded pulleys is horizontally aligned with one of the sprockets, thereby providing several pulley-sprocket pairs. Each pulley-sprocket pair supports and engages an endless transport loop, such as a chain loop, that includes a plurality of food slice-receiving members, such as sharpened prongs, hooks or teeth. The sprockets rotate so that the engaged transport loops move across the front of the stacker, from an upstream end, which includes the sprockets, toward a downstream end, which includes the pulleys. Thus, a food slice pressed onto the front of the stacker is transported or conveyed in a downstream direction to a stacking station, where a transfer fork detaches the slice from the engaged slice-receiving members and then transfers it to a stacking surface, such as a scale or a conveyor belt.
To wash and sanitize the stacker, the spring-loaded pulleys and chains must be completely disassembled. After washing, the stacker parts must be reassembled. Disassembling and reassembling the stacker is time consuming and difficult, due to the large number of complex parts. Due to this time consumption and difficulty, users tend to avoid disassembling and reassembling the stacker, and instead wash the assembled stacker. Unfortunately, this practice leads to food particles remaining in the pulleys after cleaning. As is well known in the art, food particles remaining on such food handling equipment can lead to food-born illness. Consequently, the prior art stacker is unsuitable for use with food.
The present invention provides a simplified food slice stacker that can be easily washed and sanitized as an assembled unit, does not retain food particles and is therefore suitable for use in food handling and preparation. The present invention eliminates the plurality of spring-loaded pulleys of the prior art stacker in favor of a single, unitary pulley sleeve with a plurality of pulley members. Similarly, individual sprockets are replaced by a single, unitary sprocket sleeve with a plurality of sprocket members. The pulley members and sprocket members are paired, so as to support and drive an equal number of continuous pronged transport chains. Due to the limited number of parts and smooth unitary construction of the pulleys and sprockets, the stacker of the present invention can be thoroughly washed and sanitized, either by hand or in a washing machine. The transport chains provide for some tensioning. However, in further embodiments, the stacker includes a tensioning mechanism that applies pressure to the transport chains. In one aspect, the tensioning mechanism include a leaf spring with and attached guide member that engages each of the transport chains. In another aspect, a pair of leaf springs is joined with each of the guide members. In yet another aspect, the tensioning mechanism is reversibly engageable, so that disengagement of the tensioning mechanism loosens the transport chains so as to increase the ease with which the stacker can be cleaned.
Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.
The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
Referring now to
Referring now to
Broadly speaking, food slicers 10 include a support frame 25, a slicing blade (not shown) in a blade housing 30 and a reciprocally movable food support 35. The food support 35 receives the food loaf 15, such as a block of cheese or a piece of meat to be cut into cold-cuts (i.e., slices 20). A pushing subassembly 40, such as a spring-loaded or weighted conveyor member 45, advances the food loaf 15 into an upstream side, generally 50, of the blade housing 30. As the food loaf 15 is engaged by the blade (not shown), the food support 35 is pushed and pulled, or otherwise moved, back and forth across the blade (not shown), or crosswise with respect to the blade housing 30, so that the food loaf 15 is contacted by and sliced by the blade (not shown), so as to produce the slices 20. As each slice 20 is cut from the food loaf 15, it is expelled from the downstream side 55 of the blade housing 30 and the pushing member 40 advances the food loaf 15 toward the blade (not shown).
As is more easily seen if
The pulley subassembly 100 includes a plurality of individual spring loaded pulley members 110 (see
The prior art sprocket subassembly 95 includes a plurality of sprockets 130 with teeth (not shown) that engage and drive the transport members 105. In particular, when the transport member 105 is an endless chain loop 105, the sprocket teeth (not shown) releasably engage the chain links 140 as the sprocket assembly 95 rolls forwards in a clockwise direction, such as is known in the art. Each sprocket 130 is horizontally aligned with one of the pulleys 120 and positioned so that the transport chains 105 are evenly spaced apart and parallel with one another. The sprockets 130 turn, roll or rotate such that the transport members 105 are moved or driven from the receiving station 65, which is associated with the sprocket subassembly 95, toward the stacking station 70, which is midway between the pulley subassembly 100 and the sprocket subassembly 95.
Instead of a sprocket subassembly 95 and a pulley subassembly 100, each of which has multiple components, the improved stacker 5 includes an upstream sprocket sleeve 200 and a downstream pulley sleeve 205, each of which is described in greater detail below. The sprocket sleeve 200 and the pulley sleeve 205 are each integrally formed with a smooth non-stick low-friction surface, so as to eliminate the multiple parts of the sprocket and pulley subassemblies 95, 100. Due to this unitary construction, there are few if any surfaces that can harbor food particles or bacteria, thereby rendering the stacker 5 safe and suitable for food use. The sprocket sleeve 200 and the pulley sleeve 205 engage and actuate the transport members 105, such as described below with respect to
Referring now to
Polytetrafluoroethylene (PTFE). A plurality of sprocket groups 220 are integrally formed on and radiate outwardly from the outer surface 213. The sprocket groups 220 are arranged along the length of the sleeve member 210 so as to be evenly spaced thereon. Each sprocket group 220 includes a plurality of radially extending sprocket teeth, detents or small projections 225 that are evenly spaced about the circumference of the sleeve member 210.
The transport members 105 of the stacker 5 are equal in number to the sprocket groups 220. In the illustrated embodiment, each transport member 105 is an endless chain 105 that includes a plurality of chain links 235 with outwardly extending prongs or hooks 240. The prongs 240 are oriented so as to face outwardly across the stacker front, generally 245. Each chain 105 loops around the sprocket sleeve 200 so as to be engaged and driven by one of the sprocket groups 220. In particular, as the sprocket sleeve 200 rolls or rotates forwards (i.e., clockwise when viewed from above), the sprocket teeth 225 reversibly extend through the links 235 so that the chain 105 is driven in a downstream direction (see arrow 243) across the stacker front 245.
Referring now to
Each pulley sleeve 205 includes a plurality of pulley members 260 equally spaced along the length of the pulley sleeve 205. The number of pulley members 260 is equal to the number of sprocket groups 220. Further, each of the pulley members 260 is paired with an opposed sprocket group 220 so as to provide sprocket-pulley pairs that are aligned with each other along an axis that is perpendicular to the sprocket and pulley sleeves 200 and 205.
Each pulley member 260 includes a pair of parallel side members 265, such as radially extending flanges or plates, that are joined together so as to form a central grove portion 270 therebetween. A transport member 105 is received between the side members 265 so as to slidingly engage the groove portion 270. The smooth outer surface 255 of the pulley member 260, such as the outer surface 255 of the side members 265 and the groove portion 270, enable the transport member 105 to slide freely through the pulley member 260. In some embodiments, the pulley sleeve 205 is stationary and the transport members 105 slide through the respectively associated pulley member 260, in response to actuation, or rolling, of the sprocket sleeve 200, which drives the transport member 105. In other embodiments, the pulley sleeve 205 is freely movable on the associated frame support rod (not shown), such that movement of the transport members 105 through the pulley members 260 rotates, rolls or pivots the pulley sleeve 205 about the frame support rod (not shown).
Referring to
In the illustrated embodiment, the spring members 310 are leaf springs 325, however it is foreseen that other spring mechanisms, such a torsional springs, can be substituted for the leaf springs 325. In the illustrated embodiment, each leaf spring 325 is attached to the support bar 305 at a first end 330 thereof. Additionally, the second end 335 of each leaf spring 325 is attached to the bottom side (not shown) of a guide plate 315. Each guide plate 315 includes a top side 340 with a partially cylindrical slot or channel 345 with a generally rectangular cross-section and smooth low-friction engagement surface 350. The guide plates 315 are formed of a resilient, pore-less polymer with non-stick surfaces that do not retain food particles or harbor bacteria. In some embodiments, the guide plate 315 is coated or painted with a non-stick material, such as polytetrafluoroethylene or the like, such as is known in the art
Each slot 345 is sized and shaped to slidingly receive a transport member 105 therethrough. Accordingly, the transport members 105 slide into the upstream ends 355 of respective slots 345, along the engagement surface 350, and then out of the downstream ends 360 of the slots 345. When engaged, such as is shown in
Referring to
It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.
This application claims the benefit of U.S. Provisional Application No. 62/158,299 filed May 7, 2015, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62158299 | May 2015 | US |