Washing liquid distribution system

Information

  • Patent Grant
  • 6527125
  • Patent Number
    6,527,125
  • Date Filed
    Friday, June 15, 2001
    23 years ago
  • Date Issued
    Tuesday, March 4, 2003
    21 years ago
Abstract
A system for delivering the same or differing controllable amounts of washing liquid to several flights of a spiral separator including a housing, a plurality of spaced members having a respective generally vertical passage communicating with fluid in the housing and permitting fluid to flow therethrough. A plurality of fluid passageways respectively communicate with the members to provide the same or differing amounts of liquid to each of the flights. The distributor housing may include a central liquid receiving chamber, a plurality of spaced compartments located in proximity with the chamber, a plurality of passages throughwhich fluid flows into fluid passageways respectively coupled to the compartments, a single flow controller rotatable therein to expose different portions of said passages at every rotation thereby varying the liquid flow to each compartment. The housing may be tilted to vary the amount of liquid flowing into each of the compartments, thereby delivering the same or differing amounts of liquid to each of the flights enabling adjustment of the liquid flow for each flight. Another distributor housing contains a plurality of fluid passageways fluidly communicating with the plurality of flights of spiral separator, each of the fluid passageways having respectively a vertical passage for receiving liquid from the housing into the fluid passageways, and a tilting mechanism for tilting the housing to vary liquid flow through the passages.
Description




CROSS REFERENCE TO RELATED APPLICATION




Not applicable.




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




Not applicable.




REFERENCE TO MICROFICHE APPENDIX




Not applicable.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a liquid distribution system for a plurality of surfaces using an adjustable liquid flow distributor. A preferred application for the present invention is the spiral separators industry.




2. Related Art




Washing liquid distribution systems are used in different industrial processes such as separating concentrating particles in slurry from lighter ones in a spiral separator. The use of water or liquid washing has been found to be desirable because it will keep lighter particles washed off of the concentrating particles and will also assist in moving the heavier concentrates to their points of discharge in the spiral. The movement of the concentrating particles without washing water would be quite slow or may even stop completely because they are in not only the slowest moving zone but are in a very shallow or narrow portion of the slurry.




In the prior art, washing water or liquid is delivered through a spiraling pipe or launder trough. Typically, a spiral separator contains a water-carrying pipe with openings or a water channel that is adjacent to inner side of a trough surface in a spiral separator. A multitude of control valves control water flow from the pipe or water channel to the process trough. In a seven flights spiral separator, for example, a water carrying pipe may have seven to twenty openings and usually there is a control valve for each outlet.




Another prior art system has a center column, which is used as a water reservoir, and individual valves control the amount of water supplied to each point of addition along the spiral. The pressure difference between the points of addition makes it difficult to control the flow. Additionally, the kinetic energy of water at the lowest point of addition due to the high pressure might be large enough to disturb the liquid flow around the last point of addition.




The prior art discloses a variety of washing liquid delivery pipes in a spiral separator. For example, U.S. Pat. No. 2,700,469 discloses a washing water delivery pipe for a spiral separator. A washing water carrying channel is attached to an inner side of a trough of a flight. An open pipe links the water channel to the inner side transferring water there between. Another piping arrangement is disclosed in U.S. Pat. No. 2,431,560. A washing water carrying channel is disposed adjacent an inner side of a trough. A conduit disposed in the water channel and supported upon an adjustable bracket therein diverts washing water from the water channel to the inner side of the process trough. The inlet of the conduit faces the water moving stream within the channel, while the outlet of the conduit faces the inner side. Liquid is caused to enter the inlet of the conduit and is discharged through the outlet into the inner side. Another delivery pipe is disclosed in U.S. Pat. No. 2,431,559. A conduit is disposed transversing the trough so that the inlet of the conduit faces the upper and outer side of the trough and the outlet faces the inner and lower side. Water is caused to enter the inlet of the conduit and is discharged through the outlet to the inner and lower side of the process trough.




However, those washing water piping delivery systems suffer from several problems. On occasions, the amount of washing water in a particular trough surface in a flight needs to be adjusted. For example, when heavy concentrating particles composes a big proportion of a slurry, the thin film of liquid flowing adjacent the inner side of a flight may not be sufficient to transport the heavy particles down the spiral. In order to add water to the thin liquid film, one needs to adjust the water control valves. For example, adjusting one valve to increase the flow often decreases the flow to all other outlets. The decrease of water amount volume through one outlet is not proportional to that in another outlet. The decrease in flow in the other outlets may not be desirable. To avoid such problem, an operator even has to adjust all the valves in the spiral separator.




Furthermore, the problem is worsen if the process includes several hundred separators each having several flights as is the case normally. Adjusting all the valves in all these separators consumes significant time and energy and becomes practically an impossible task Additionally, the control valves may become blocked because the they are sensitive to impurities in the water since the size of these control valves is very small.




Because of these and other problems in the prior art, it is apparent that there is a need for a water distribution system that enables control of amount of water flowing in a plurality of flights in several separators.




It is an object of the present invention to provide a washing liquid distribution system that enables manipulating the amount of liquid flowing into each flight of a single spiral separator.




It is another object of the invention is to provide for a liquid distribution system that enables easy and quick adjustment of water levels in a plurality of flights in several separators.




It is another object of the invention to enable efficient use of washing liquid.




It is an additional object of the invention to increase efficiency of separation in a spiral separator.




Still, it is another object of the invention to provide remote control of washing liquid delivered to outlets of a spiral.




Yet, it is another object of the invention to provide automatic control of washing liquid delivered to outlets of a spiral.




BRIEF SUMMARY OF THE INVENTION




The invention relates to a washing liquid distribution system to a variety of surfaces. Preferably, the system is used with spiral separators. The system includes a distributor housing which receives fluid therein to be distributed, a plurality of spaced members have a respective generally vertical passage communicating with fluid in the housing for permitting fluid to flow through the passages into the members, and a plurality of fluid passageways respectively communicating with the members to provide the same or differing amounts of liquid to each of the flights of the spiral.




In one embodiment, the members include a plurality of spaced fluid passageways disposed vertically inside the housing and having a height less than that of the housing. The fluid passageways have respective passage for receiving liquid from the housing into the fluid passageways. The system includes means for tilting the housing to vary liquid flow through the passages, thereby changing amounts of liquid flowing to the plurality of flights in the separator.




In another embodiment, a water or liquid flow distributor housing is disposed on top of an upper inlet of a spiral separator having a helical trough surface shaped into a plurality of flights. The housing includes a liquid flow controller which is a rectangular housing comprised of rectangular sections disposed about a center chamber fluidly connected to a liquid source. Each of the sections has a generally vertical extending passage communicating fluidly with the center chamber. Also, each section has at least one outlet connected to at least one fluid passageway to distribute varying amount of washing liquid passing through the passage to the trough surface. The fluid passageway delivers liquid adjacent an inner side of the trough. The housing may be supported on a pivotal axle midway of the housing or on a hinge joint underneath one side and a rotatable elliptical cam underneath the other side. When the housing is at flat level, a portion of each of the passages is exposed to liquid coming from the chamber and flow into the trough. When the cam rotates upwardly, one side of the housing moves upwardly, while the other side remains coupled to the hinge joint. As a result, the passages are tilted with perhaps some being fully exposed to the liquid flowing from the chamber, others will be less exposed, and some will be completely closed depending on the angle of tilting. Consequently, the amount of liquid flowing through the outlet of each passage will vary in proportion to the angle of tilting. Each passage distributes washing liquid adjacent an inner side of the trough surface. Varying the tilt angle produces proportional changes in the amount of washing liquid flowing in each trough surface of a flight. An operator can change the amount of liquid flowing into a particular flight. By changing the angle of tilt, the amount of liquid flowing through one passage to one flight varies, while the amount flowing from other passages to other flights varies in proportion to the change in the first one.




If a large number of separators are needed, a liquid flow distributor may be disposed on top of each separator. A main liquid supply provides liquid to all the distributors. This scheme enables an operator to control a liquid flow into each separator. Alternatively, one liquid flow distributor can be used for all the separators. Both of those systems can be automated by adding a flow control mechanism to control flow from the liquid supply to a liquid distributor. Preferably, an on-stream analyzer is used to analyze composition of different samples of concentrate middlings and tailings drawn from the spirals. The analyzer signals analysis data to the control mechanism assisting the control mechanism in determining an appropriate amount of flow to the spirals.




In further embodiment, a washing liquid distributor housing has a plurality of compartments disposed around a cylindrical center chamber. A cylindrical liquid flow controller has an upper slanted edge. The liquid flow controller is disposed inside the center chamber with the outer surface of controller being juxtaposed with the inner surface of chamber. Each of the compartments has a vertical passage fluidly connecting the compartment to the center chamber. Also, each compartment has at least one outlet connected to at least one fluid passageway. The liquid flow controller receives liquid from a liquid supply. At any rotated position, the controller exposes and covers some areas or portions of passages to liquid flow. When the controller rotates to selected positions around its vertical central axis inside the center chamber, changes in the areas covered and exposed to liquid flow are provided which changes amount of water flowing through these passages to the fluid passageways. Each passage in each compartment delivers liquid flow to fluid passageways, which are connected to different flights of a separator. Fluid passageways deliver washing liquid to a trough surface of the spiral separator. Consequently, rotation of the controller provides differing amounts of washing liquid to different flights in the separator. If an operator desires to increase or decrease the amount of washing liquid flowing into a separator, the operator simply rotates the controller to cause delivery of more or less amount of liquid. The amount of washing liquid flowing into other flights also will change but the changes will generally be in proportion to the change in flow desired by the operator. The controller upper edge may have different contours as may be required by different processes for separating different particles.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING




The novel features believed to be characteristic of this invention are set forth with particularity in the appended claims. The invention itself however, both as to its organization and method of operation, together with further objects and advantages thereof may best be understood by reference to the following description taken in connection with the accompanying drawings in which:





FIG. 1

is an isometric view of one embodiment of a round washing liquid flow distributor with liquid flow controller in accord with this invention;





FIG. 2

is a plan view of

FIG. 1

;





FIG. 3

is a cross sectional view of FIG.


1


and showing the upper end of the supporting column and fluid passages;





FIG. 4

is an exploded isometric view of one embodiment of a washing liquid system of this invention;





FIG. 5

is an isometric view of an alternate embodiment showing another disposition of fluid passageways delivering washing liquid adjacent an inner side of a process trough;





FIG. 6

is an isometric view of a second embodiment of the system showing a single washing liquid distributor delivering washing liquid to a plurality of spiral separators shown separately but may be installed on the same column;




FIG


7


is a cross sectional view showing another embodiment of the system for a main water distribution system;





FIG. 8

is a cross section view of a further embodiment showing an automated washing liquid distribution system;





FIG. 9

is a plan view of a rectangular embodiment of a washing liquid distributor;





FIG. 10

is a cross sectional view of

FIG. 9

with a rotatable cam below one end;





FIG. 11

is a cross sectional view similar to

FIG. 10

showing the cam in full tilt position;





FIG. 12

is a pictorial depiction of another rectangular embodiment of a washing liquid distributor;





FIG. 13

is an exploded isometric view showing a further embodiment of a washing liquid system having a plurality of fluid passageways having passages disposed in a housing and supported on a pivotal axle midway of the housing and/or a rotatable elliptical cam underneath the other side;





FIGS. 13A and B

are practical alternative embodiments of the passages, which can be applied to the embodiments shown in FIGS.


1


and


9


-


12


; and





FIG. 13C

is a side view of FIG.


13


B.











DETAILED DESCRIPTION OF THE INVENTION




The features and design details of the invention are best understood by reference to the attached drawings.





FIG. 1

shows a washing liquid distributor housing


10


having a plurality of members or compartments


16


disposed around a cylindrical center chamber


12


. A cylindrical liquid flow controller


14


is depicted having an upper slanted edge


22


. The liquid flow controller


14


is disposed inside the center chamber


12


with the outer surface of controller


14


being juxtaposed with the inner surface of chamber


12


. Each of the compartments


16


has a vertical passage


20


fluidly connecting compartment


16


to the center chamber


12


. Also, each compartment


16


has at least one outlet


18


connected to at least one fluid passageway or pipe


26


. The center chamber


12


with the liquid flow controller


14


receives liquid from a liquid supply, not shown. At any rotated position, the controller


14


exposes and covers some areas or portions of passages


20


to liquid flow. When the controller


14


rotates to selected positions around its vertical central axis inside center chamber


2


, changes in the areas covered and exposed to liquid flow are provided which changes amount of water flowing through these passages


20


to fluid passageways


26


. Each passage


20


in each compartment


16


delivers liquid flow to fluid passageways


26


, which are connected to different flights


30


of a separator


25


. Fluid passageways


26


deliver washing liquid to a trough surface


33


of the spiral separator


25


. Consequently, rotation of the controller


14


provides differing amounts of washing liquid to different flights


30


in the separator


25


, as shown in FIG.


4


. If an operator desires to increase or decrease the amount of washing liquid flowing into a trough surface


33


, the operator simply rotates the controller


14


to cause delivery of more or less amount of liquid. The amount of washing liquid flowing into other flights also will change but the changes will generally be in proportion to the change in flow desired by the operator. The slanted edge


22


can be provided with different contours having differing properties for various separators which process different particulates.





FIG. 2

shows a plan view of an embodiment of the washing liquid distributor


10


. The distributor


10


can be of any shape but is shown here as a cylindrical configuration. A plurality of compartments


16


may be of any number and have one or more outlets


18


, best shown in FIG.


1


.





FIG. 3

shows a cross section of a liquid distributor housing


10


disposed on top of a single spiral separator


25


. A plurality of fluid passageways or liquid carrying fluid passageways


26


extends into a support column


28


of a spiral separator


25


. The fluid passageways


26


pass through openings


27


in support column


28


to deliver washing liquid into dampening receivers


32


and


40


to reduce or dampen speed and kinetic energy of the liquid being fed from distributor


10


, as shown more clearly in

FIGS. 4-6

. Receiver


32


laterally discharges washing liquid through bottom opening


32


A into trough surface


33


adjacent an inner side of a liquid and concentrate channel


34


to assist in moving heavier concentrating particles flowing adjacent the inner side thereof to their drawoff entrances


35


spaced along the inner side. An adjustable rib


36


pivotally attached at


37


is positioned adjacent channel


34


and serves to divert heavier concentrating particles and water into concentrate channel


34


.




An alternative embodiment is shown in

FIG. 5

wherein one fluid passageway


26


transports washing liquid from compartment


16


, best shown in

FIG. 1

, to dampening receiver


32


and hence into receiver


40


as well. The fluid passageway


26


delivers washing liquid into receiver


32


and a portion of the liquid therefrom passes through the tube


26


A into another receiver


40


spaced downwardly from receiver


32


. This arrangement accomplishes an appropriate distribution of the washing liquid by dividing the volume of the liquid between two or more receivers


32


and


40


as may be required when the number of fluid passageways required coining down the support column exceeds the cross-section of the support column.




In

FIG. 6

there is shown an alternative embodiment. A single liquid distributor


10


distributes washing liquid to a plurality of spiral separators


25


shown separately but may be installed on the same column


28


. Each of compartments


16


has double outlets


18


transferring washing liquid to two fluid passageways


26


to deliver the liquid to at least two trough surfaces


33


of spiral separators


25


. A plurality of outlets for a plurality of fluid passageways can be employed here. An operator can control and manipulate flow of washing liquid into several separators by employing a single liquid distributor and liquid flow controller as shown here in.





FIG. 7

shows another alternative system embodiment. A main conventional liquid supply distributor


44


feeds washing liquid to a plurality of secondary distributors


10


at each of columns


28


of separators


25


. An operator adjusts liquid flow to a plurality of separators


25


by simply manipulating control valve


45


via electrical valve


49


and flowmeter


47


. This arrangement enables the operator to vary the flow of liquid to several separators


25


using a single valve


45


and to control the liquid flow for each separator


25


by its own distributor


10


. The above arrangement can be automated to provide efficient and precise control of flow of washing liquid into several separators.





FIG. 8

illustrates another system embodiment wherein a liquid supply tank


44


A is connected to a flow control mechanism


46


, which includes level sensor


53


, water control valve


51


and on-stream analyzer


48


. The on-stream analyzer


48


takes samples of the products at pre-determined times and analyzes composition of each sample. The analyzer


48


sends the analysis data to the control mechanism


46


that uses the data determine the amount of washing liquid necessary for the flight


30


in the separators


25


to ensure optimal separation of heavier concentrating particles from lighter particles. The control mechanism


46


manipulates water control valve


51


to adjust the height of liquid in tank


44


A and the amount of washing liquid flowing therefrom, thereby adjusting the height of the liquid in each distributor


10


.




An alternative embodiment to washing liquid distributor


10


is shown by


10


A in FIG.


9


. The distributor housing


10


A has a rectangular or oblong shape and includes a plurality of compartments


16


A disposed on either side of a center chamber


12


A. Each compartment


16


A has at least one outlet


18


A for transferring washing liquid from the compartment to a trough surface


33


, see

FIG. 4

, of a separator


25


through fluid passageways carrying liquid


26


A. Longitudinal cross sectional view of the distributor


10


A are shown in

FIGS. 10 and 11

. Each compartment


16


A has a longitudinal passage


20


A communicating fluidly with the center chamber


12


A. A rotatable elliptical cam


50


in the form of an elongated roll is placed under one end of distributor


10


A, while the other side being supported on hinge joint


52


. The distributor


10


A is at flat level when cam


50


is horizontal or when its rotational angle is at zero. A certain area or portion of each passage


20


A is exposed to washing liquid being supplied to the center chamber


12


A. When cam


50


rotates preferably between angles zero to ninety, each passage


20


A has a different area being exposed to permit more or less washing liquid to flow. As a result, different volumes of liquid flow through each passage


20


A through outlets and into each trough surface


33


of a flight


30


. The different amounts are in proportion to the angle of rotation of cam


50


. An operator establishes the preferred amount of washing liquid for each flight


30


and the proportionate angles of rotation of the cam


50


. An operator can increase or decrease the amount of water flowing into each flight without excessively increasing or decreasing the amount needed in other flights. The operator can simply rotate the cam a certain degree to attain a certain flow level entering one flight


30


and a proportional flow in the other flights. This action increases the efficiency of separating heavy from lighter particles by delivering precise amounts of liquid where it is needed into any appropriate flights. It also conserves washing liquid supplied to the separator because only needed quantities will be used. Also efficient operation of a large numbers of spirals each having a plurality of flights is achieved. A synchronized movement of all the cams for the distributor


10


A can be achieved by use of a stepping motor to power the cam and such motors may be remotely controlled, as well known in the art.





FIG. 12

illustrates a further embodiment for rotating cam


50


A. Distributor


10


A is at a flat level when cam


50


A is at approximately


45


degrees angle. When cam


50


A rotates 45 degrees downwardly or negative 45 angle degrees, distributor


10


A is tilted downwardly. This tilting action changes exposure areas of passages


20


A to washing liquid flow, thereby varying the amount of flow to each trough surface


33


of a flight


30


. When cam


50


A rotates upwardly, distributor


10


A tilts upwardly, thus varying flow through each passage


20


A to their corresponding trough surface


33


of a flight


30


. Other alternative devices for tilting distributor


10


A, known to those skilled in the art can also be used, such as lifting devices, screws, wedges, hydraulic cylinders, pistons and motors, and so forth.





FIG. 13

shows an alternative embodiment of the washing liquid distribution system. A housing


54


contains a plurality of members or fluid passageways


55


disposed inside the housing


54


and each have a generally vertical passage


56


for receiving liquid from the housing


54


into the fluid passageways


55


for delivering the liquid to flights of a spiral separator, shown in

FIGS. 4-8

. The fluid passageways


55


have a height less than that of the housing


10


. In contrast to the embodiment of

FIG. 1

where liquid flows through passages


20


in compartments


16


into passageways


26


, liquid may flow directly from housing


54


into passages


56


of fluid passageways


55


, as shown in FIG.


13


. Fluid passageways


55


may or may not be the same fluid passageways


59


, which extend through the column


28


of the separator shown in

FIGS. 3 and 4

. The housing


54


may be supported on a direct powered pivotal axle


57


midway of the housing


54


or on a combination of a non-powered pivotal axle


57


midway and tilting means such as a rotatable elliptical cam


58


underneath one end of the housing


54


, as shown in

FIGS. 10-12

. Rotating the elliptical cam


58


or the powered pivotal axle


57


slants the housing


54


, thereby changing water level flowing into passages


56


of fluid passageways


55


and thence delivering differing amounts of liquid to different flights of the spiral separator.




FIG,


13


A depicts a generally vertical passage


56


A that can be applied if desired to the embodiments shown in FIGS.


1


and


9


-


12


. The V-shaped passage


56


A is formed in the upper end of the passageway


55


and is tapered from the top to the bottom including an angle (X) of about 15 to 30 degrees. The passage


56


A is tapered to provide greater flow of washing liquid in the upper portion of the passageway


55


thus rendering the tilt adjustment more readily controllable for flow control to the spiral.





FIG. 13B

shows a generally vertical elliptically passage


56


B formed at the end of the passageway


55


and can be applied to the embodiments shown in FIG.


13


. Also, it is clear that a generally vertical elliptical passage may also be applied if desired to the embodiments of FIGS.


1


and


9


-


12


. On one hand, controlling the amount of water flowing from passage


56


B may be more difficult compared to passage


56


A; on the other hand, passage


56


B may be easier to manufacture on a commercial basis. Other shapes of generally vertical passages or passages having an elongated axis extending generally vertically may also be used without departing from this invention.




While the invention has described with respect to certain specific embodiments, it will be appreciated that many modifications and changes may be made by those skilled in the art without departing from the spirit of the invention. It is intended, therefore, by the appended claims to cover all such modifications and changes as fall within the true spirit and scope of the invention.



Claims
  • 1. A washing liquid distribution system for distributing liquid to a plurality of flights of a separator comprising a liquid flow distributor including a housing which receives fluid therein to be distributed, a plurality of spaced members having a respective generally vertical passages communicating with fluid in said housing for permitting fluid to flow through said passages into said members, a plurality of fluid passageways respectively communicating with said members to provide the same or differing amounts of liquid to each of said flights.
  • 2. The system of claim 1 wherein said housing includes a central liquid receiving chamber, and wherein said members include a plurality of spaced compartments located in proximity with said chamber and said plurality of generally vertical passages communicate fluidly between said chamber and said compartments, said plurality of passageways including a plurality of pipes respectively coupled to said compartments, each of said compartments delivering the same or differing amounts of liquid to each of said pipes.
  • 3. The system of claim 2 wherein said housing includes a movable flow controller disposed inside said chamber to vary liquid flow to each of said compartments when said flow controller moves from one position to another.
  • 4. The system of claim 3 wherein said controller having a slanted upper edge and having cylindrical shape substantially conforming to said chamber, said chamber being rotatable therein to expose different portions of said passages at every rotation thereby varying the liquid flow to each of said compartments.
  • 5. The system of claim 1 wherein said passages are substantially vertical, and further including a tilting means for slanting said distributor from horizontal to vary exposed areas of said passages thereby varying the amount of liquid flowing into said compartments.
  • 6. The system of claim 1 wherein said housing is elongated, and further including a rotatable cam disposed underneath one end of said housing and a hinge joint disposed underneath another end of said housing, said cam being rotatable for changing slope of said housing to change exposed areas of said passages to liquid in said chamber thereby varying amounts of liquid flowing through said passages into said compartments.
  • 7. The system of claim 1 further including a liquid supply providing liquid to said housing, a control mechanism for controlling flow of liquid flowing inside said members, and a stream analyzer for analyzing composition of a stream of particles traveling through a spiral separator.
  • 8. The system of claim 1 wherein said plurality of fluid passageways being disposed about a support column and pass through openings in the support column to deliver a washing liquid therefrom, said system further including a dampening receiver disposed about the support column and adapted to receive washing liquid from said plurality of fluid passageways to dampen energy of the liquid and deliver the liquid adjacent an inner side of a flight in a spiral separator.
  • 9. The system of claim 8 further including a plurality of dampening receivers disposed directly opposite from each other about the support column.
  • 10. The system of claim 1 wherein said members include a plurality of spaced pipes disposed vertically inside said housing and having a height less than that of said housing, said pipes having respective passages for receiving liquid from said housing into said pipe, and said system further including means for tilting said housing to vary liquid flow through said passages thereby changing amounts of liquid flowing to said plurality of flights.
  • 11. The system of claim 1 wherein said passages are elongated.
  • 12. The system of claim 1 wherein said passages are elliptical.
  • 13. The system of claim 1 wherein said passages are V-shaped narrowing toward a bottom of said housing.
  • 14. A washing liquid distribution system comprising a distributor housing, a central chamber, a plurality of compartments located in proximity with said chamber and having a plurality of passages having an elongated axis extending generally vertically communicating fluidly with said chamber, a plurality of fluid passageways respectively coupled to said compartments, means for simultaneously varying flow of liquid to each of said fluid passages for delivering the same or differing amounts of liquid to each of said fluid passageways.
  • 15. The system of claim 14 wherein said means include a hinge joint disposed underneath one end of said distributor and a tilting member disposed underneath another end of said distributor for tilting said distributor and to vary exposed areas of said passages to liquid thereby varying amounts of liquid flowing to each of said fluid passageways.
  • 16. The system of claim 14 wherein said means include an elongated cam disposed underneath one end of said distributor, a hinge joint disposed underneath another end of said distributor, said cam being rotatable from one position to another to vary exposed areas of said passages to liquid in said chamber thereby varying amounts of liquid flowing to each of said fluid passageways.
  • 17. The system of claim 14 further including a liquid supply providing liquid to said distributor, a control mechanism for controlling flow to said fluid passageways, a stream analyzer for analyzing a composition of a stream of particles traveling through a spiral separator.
  • 18. The system of claim 14 wherein said plurality of fluid passageways being disposed within a support column and pass though openings in said support column to deliver washing liquid therefrom, said system further including dampening receivers spatially disposed about the support column to receive liquid from said plurality of fluid passageways to dampen energy of the liquid and deliver it adjacent an inner side of a trough surface of a flight in a spiral separator.
  • 19. A washing liquid distribution system comprising a distributor having a central chamber, a plurality of hollow members in proximity with said chamber and having a plurality of passages communicating fluidly with said chamber, a plurality of fluid passageways coupled to respective said members, each of said compartments having an outlet communicating fluidly with said fluid passageways, and a flow controller movable from one position to another for exposing different portions of said passages in each of said positions of said controller thereby varying amounts of liquid flowing into each of said members and into each of said fluid passageways.
  • 20. The system of claim 19 wherein said chamber having cylindrical shape, said controller being cylindrical in shape substantially conforming to said chamber and being disposed inside it, said controller having a slanted upper edge exposing different portions of said passages in each of said positions thereby varying amounts of liquid flowing into each of said members.
  • 21. The system of claim 19 wherein said controller includes a tilting member disposed underneath said distributor for tilting said distributor to change exposed areas of said passages thereby varying amounts of liquid flowing to said members.
  • 22. The system of claim 19 wherein said distributor is elongated, said controller including a longitudinal rotatable cam disposed underneath one end of said distributor, a hinge joint disposed underneath another end of said distributor, said cam being rotatable for changing slope of said distributor to change exposed areas of said passages to liquid thereby varying amounts of liquid flowing therefrom.
  • 23. The system of claim 19 further including a plurality of receivers disposed around a support column of a spiral separator to receive washing liquid from said fluid passageways and deliver liquid to a trough surface of a flight in the separator.
  • 24. The system of claim 19 further including a plurality of spiral separators having a plurality of flights, said distributor distributes differing amounts of liquid to each flight of a spiral separator.
  • 25. The system of claim 19 further including a spiral separator for separating heavier particle concentrations from lighter particles and having a plurality of flights, said controller delivers differing amounts of washing liquid to each flight for enhancing efficiency of separation of the separator.
US Referenced Citations (9)
Number Name Date Kind
2700469 Humphreys Jan 1955 A
2985589 Broughton et al. May 1961 A
3568832 Persson Mar 1971 A
3849232 Kessler et al. Nov 1974 A
4567942 Stafford et al. Feb 1986 A
4839108 Silvey Jun 1989 A
5472096 Prinsloo Dec 1995 A
5680989 Plachy et al. Oct 1997 A
6216733 Sondov Apr 2001 B1
Foreign Referenced Citations (2)
Number Date Country
2193121 Feb 1988 GB
3-223576 Oct 1991 JP