The present subject matter relates generally to washing machine appliances and methods for monitoring speed of a rotating basket in a washing machine appliance.
Washing machine appliances generally include a tub with a basket rotatably positioned within the tub. Articles to be washed, such as clothes, are placed in the machine's basket. A motor may be mechanically coupled to the basket and/or an agitation element disposed within the basket, such as by a direct drive or a belt and pulley, for rotation of the basket and/or agitation element. At various points in the operation of the washing machine, the basket and/or agitation element can rotate to move articles within the basket to facilitate washing. For example, the basket and/or agitation element may be rotated during a rinse cycle of the washing machine appliance to facilitate distributing rinse fluid evenly on articles within the basket.
As another example, the basket and/or agitation element may be rotated during an agitation operation of the washing machine appliance. Such rotation during the agitation operation may include oscillation, e.g., rotating in a first direction, stopping, then rotating in the opposite direction. When rotating the basket and/or agitation element, the heat of the drive motor may rise.
Washing machine appliances typically measure the speed of rotation of the basket in order to ensure the speed stays below a predetermined limit. Some washing machine appliances include dedicated sensors for measuring the rotational speed, which can result in increased cost and complexity to the washing machine appliance. Other washing machines eliminate the dedicated sensor, but this results in less accurate speed measurement.
Accordingly, a washing machine appliance with features for accurately measuring rotational speed of a basket in the washing machine without a dedicated speed sensor would be useful.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect of the present disclosure, a method of operating a washing machine appliance is provided. The washing machine appliance includes a cabinet, a basket rotatably mounted within the cabinet, a motor configured to rotate the basket, and a controller in operative communication with the motor to regulate a speed of the motor. The method includes activating the motor to rotate the basket at a rotational speed within a predetermined speed range and measuring the rotational speed of the basket with the controller. The method also includes monitoring an ambient temperature inside the cabinet of the washing machine appliance with the controller and applying an offset to the measured rotational speed when the monitored ambient temperature exceeds a threshold.
In another aspect of the present disclosure, a washing machine appliance is provided. The washing machine appliance includes a cabinet with a basket rotatably mounted within the cabinet and a motor configured to rotate the basket. The washing machine appliance also includes a controller in operative communication with the motor to regulate a speed of the motor. The controller is configured for activating the motor to rotate the basket at a rotational speed within a predetermined speed range and measuring the rotational speed of the basket with the controller. The controller is also configured for monitoring an ambient temperature inside the cabinet of the washing machine appliance and applying an offset to the measured rotational speed when the monitored ambient temperature exceeds a threshold.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, terms of approximation, such as “generally,” or “about” include values within ten percent greater or less than the stated value. When used in the context of an angle or direction, such terms include within ten degrees greater or less than the stated angle or direction. For example, “generally vertical” includes directions within ten degrees of vertical in any direction, e.g., clockwise or counter-clockwise.
As used herein, the terms “articles,” “clothing,” or “laundry” include but need not be limited to fabrics, textiles, garments, linens, papers, or other items which may be cleaned and/or treated in a washing machine appliance. Furthermore, the term “load” or “laundry load” refers to the combination of clothing that may be washed together in a washing machine appliance or dried together in a dryer appliance (e.g., clothes dryer) and may include a mixture of different or similar articles of clothing of different or similar types and kinds of fabrics, textiles, garments and linens within a particular laundering process.
Control panel 58 and input selectors 60 collectively form a user interface input for operator selection of machine cycles and features, and in one embodiment, a display 61 indicates selected features, a countdown timer, and/or other items of interest to machine users. It should be appreciated, however, that in other exemplary embodiments, the control panel 58, input selectors 60, and display 61, may have any other suitable configuration. For example, in other exemplary embodiments, one or more of the input selectors 60 may be configured as manual “push-button” input selectors, or alternatively may be configured as a touchscreen on, e.g., display 61.
A lid 62 is mounted to cover 54 and is rotatable between an open position (not shown) facilitating access to a tub, also referred to as a wash tub, 64 (
A nozzle 72 is configured for flowing a liquid into tub 64. In particular, nozzle 72 may be positioned at or adjacent to top portion 82 of basket 70. Nozzle 72 may be in fluid communication with one or more water sources 76, 77 in order to direct liquid (e.g. water) into tub 64 and/or onto articles within chamber 73 of basket 70. Nozzle 72 may further include apertures 88 through which water may be sprayed into the tub 64. Apertures 88 may, for example, be tubes extending from the nozzles 72 as illustrated, or simply holes defined in the nozzles 72 or any other suitable openings through which water may be sprayed. Nozzle 72 may additionally include other openings, holes, etc. (not shown) through which water may be flowed, i.e., sprayed or poured, into the tub 64.
Various valves may regulate the flow of fluid through nozzle 72. For example, a flow regulator may be provided to control a flow of hot and/or cold water into the wash chamber of washing machine appliance 50. For the embodiment depicted, the flow regulator includes a hot water valve 74 and a cold water valve 75. The hot and cold water valves 74, 75 are utilized to flow hot water and cold water, respectively, therethrough. Each valve 74, 75 can selectively adjust to a closed position in order to terminate or obstruct the flow of fluid therethrough to nozzle 72. The hot water valve 74 may be in fluid communication with a hot water source 76, which may be external to the washing machine appliance 50. The cold water valve 75 may be in fluid communication with a cold water source 77, which may be external to the washing machine appliance 50. The cold water source 77 may, for example, be a commercial water supply, while the hot water source 76 may be, for example, a water heater. Such water sources 76, 77 may supply water to the appliance 50 through the respective valves 74, 75. A hot water conduit 78 and a cold water conduit 79 may supply hot and cold water, respectively, from the sources 76, 77 through the respective valves 74, 75 and to the nozzle 72.
An additive dispenser 84 may additionally be provided for directing a wash additive, such as detergent, bleach, liquid fabric softener, etc., into the tub 64. For example, dispenser 84 may be in fluid communication with nozzle 72 such that water flowing through nozzle 72 flows through dispenser 84, mixing with wash additive at a desired time during operation to form a liquid or wash fluid, before being flowed into tub 64. For the embodiment depicted, nozzle 72 is a separate downstream component from dispenser 84. In other exemplary embodiments, however, nozzle 72 and dispenser 84 may be integral, with a portion of dispenser 84 serving as the nozzle 72, or alternatively dispenser 84 may be in fluid communication with only one of hot water valve 74 or cold water valve 75. In still other exemplary embodiments, the washing machine appliance 50 may not include a dispenser, in which case a user may add one or more wash additives directly to wash chamber 73. A pump assembly 90 (shown schematically in
In some embodiments, for example as illustrated in
Various sensors may additionally be included in the washing machine appliance 50. For example, a pressure sensor 110 may be positioned in the tub 64 as illustrated or, alternatively, may be remotely mounted in another location within the appliance 50 and be operationally connected to tub 64 by a hose (not shown). Any suitable pressure sensor 110, such as an electronic sensor, a manometer, or another suitable gauge or sensor, may be utilized. The pressure sensor 110 may generally measure the pressure of water in the tub 64. This pressure can then be utilized to estimate the height or amount of water in the tub 64. Additionally, a suitable speed sensor can be connected to the motor 94, such as to the output shaft 98 thereof, to measure speed and indicate operation of the motor 94. Other suitable sensors, such as temperature sensors, water/moisture sensors, etc., may additionally be provided in the washing machine appliance 50.
Operation of washing machine appliance 50 is controlled by a processing device or controller 100, that is operatively coupled to the input selectors 60 located on washing machine backsplash 56 (shown in
Controller 100 is a “processing device” or “controller” and may be embodied as described herein. As used herein, “processing device” or “controller” may refer to one or more microprocessors, microcontroller, application-specific integrated circuits (ASICS), or semiconductor devices and is not restricted necessarily to a single element. The controller 100 may be programmed to operate washing machine appliance 50 by executing instructions stored in memory. The controller may include, or be associated with, one or more memory elements such as for example, RAM, ROM, or electrically erasable, programmable read only memory (EEPROM). For example, the instructions may be software or any set of instructions that when executed by the processing device, cause the processing device to perform operations. Controller 100 can include one or more processor(s) and associated memory device(s) configured to perform a variety of computer-implemented functions and/or instructions (e.g. performing the methods, steps, calculations and the like and storing relevant data as disclosed herein). It should be noted that controllers 100 as disclosed herein are capable of and may be operable to perform any methods and associated method steps as disclosed herein.
While described in the context of specific embodiments of washing machine appliance 50, using the teachings disclosed herein it will be understood that washing machine appliance 50 is provided by way of example only. Other laundry appliances having different configurations (such as horizontal-axis washing machine appliances, or various clothes dryer appliances), different appearances, and/or different features may also be utilized with the present subject matter as well.
Embodiments of the present disclosure include methods of operating a washing machine appliance. One example of such embodiments is the method 300 illustrated in
As shown in
Also as shown in
Still with reference to
In some embodiments, e.g., as illustrated at 308 in
In some embodiments, the method may dynamically compensate the oscillator frequency based on the input temperature, thereby optimizing the accuracy of the current-based speed algorithms. For example, the offset may be a first offset and the threshold may be a first threshold, and the method 300 may further include applying a second offset greater than the first offset when the monitored ambient temperature exceeds a second threshold greater than the first threshold. For example, the frequency drift may vary linearly with temperature over a first temperature range, e.g., between the first threshold and the second threshold the frequency drift may vary at a constant rate as temperature increases, whereas the rate of frequency drift may increase when the ambient temperature is above the second threshold. Thus, the first offset may account for the drift when the ambient temperature is within the first temperature range and the second offset may account for the frequency drift when the ambient temperature is above the second threshold.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
20190305725 | Whei | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
102591197 | Jul 2012 | CN |
106521888 | Aug 2018 | CN |
2018079210 | May 2018 | JP |
101053612 | Aug 2011 | KR |
Entry |
---|
Machine Translation of KR 101053612 B1, Aug. 2011. (Year: 2011). |
Number | Date | Country | |
---|---|---|---|
20220127773 A1 | Apr 2022 | US |