This application claims the benefit of Korean Patent Application No. 10-2014-0008038, filed on Jan. 22, 2014 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
Embodiments of the present disclosure relate to a washing machine.
Ultrasonic energy has been used in various technical fields. Recently, studies into a technique for applying ultrasonic energy to a washing machine are actively conducted.
Acoustic radiation pressure among the characteristic factors of ultrasonic energy oscillates a medium together with ultrasonic oscillation when acoustic intensity exceeds an amplitude of a specific threshold value. Accordingly, if the acoustic radiation pressure is used to wash clothes or textile goods, it can be able to facilitate elimination of foreign materials, stains, and microorganisms adhered between or absorbed on fiber texture. A straight jet, which is the flow of fluid going straight when ultrasonic oscillation occurs, can facilitate various reactions, such as ultrasonic cleaning and ultrasonic dispersion. A standing wave is an acoustic wave in which an incident wave and a reflected wave do not overlap when a plane acoustic wave is incident at a right angle to the boundary of a wide wall. If resonance occurs due to frequency overlapping, a maximum amplitude appears, whereas if the amplitude becomes zero, maximum pressure appears, which results in tissue destruction of foreign materials, stains, and microorganisms existing in an area to which ultrasonic waves are strongly applied. Directivity of ultrasonic waves is a characteristic in which sound is strongly emitted in a specific direction according to the pitch of frequency so that high-pitched sound having a high frequency is emitted intensively in the front direction of a plane of vibration, and low-pitched sound having a low frequency is emitted in the traverse direction of a plane of vibration as well as in the front direction of the plane. The sharper directivity appears at the higher frequency. Directivities of sound sources having different magnitudes become more sharp at the greater ratios of the magnitudes of the sound sources with respect to the diameters or wavelengths of the sound sources, so that cell tissues of foreign materials, stains, and microorganisms existing within the range of directivity can be destructed.
Ultrasonic Cavitation is a phenomenon in which when ultrasonic waves greatly accelerate medium particles, cavitation nuclei existing in fluid are collected, grown, developed, and finally squeezed. Since fluid includes gases depending on the kind, temperature, and pressure of the fluid, cavities or air bubbles are grown in proportion to the sizes of atoms or molecules when ultrasonic waves are applied to the fluid.
Based on the above-described principle, if an oscillator for low-frequency oscillation is installed in a drum to cause resonance, it will be possible to perform washing through a chemical action of detergents and mechanical energy caused by cavitation or nonlinear oscillation of generated bubbles.
Therefore, it is an aspect of the present disclosure to provide a washing machine capable of improving an effect of washing by causing chaotic oscillation of bubbles through ultrasonic energy.
Additional aspects of the disclosure will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the disclosure.
In accordance with one aspect of the present disclosure, a washing machine includes: a tub; a drum rotatably disposed inside the tub; and an ultrasound generator configured to emit ultrasonic waves to washing water loaded in the drum, and to generate bubbles, wherein the ultrasound generator applies ultrasonic energy to the washing water to cause chaotic oscillation of the bubbles.
A condition of the ultrasonic energy causing the chaotic oscillation of the bubbles may include at least one condition of a displacement amplitude condition of the bubbles and an ultrasonic wave frequency and acoustic pressure condition.
A displacement amplitude of the ultrasonic waves that are generated by the ultrasound generator may be in a range of 4.5 μm to 22.5 μm in the washing water.
If a frequency generated by the ultrasound generator is 20 kHz, acoustic pressure of the ultrasonic waves may be in a range of 600 kPa to 3000 kPa.
The ultrasound generator may include an ultrasound transducer configured to generate ultrasonic waves, and an ultrasound horn coupled with the ultrasound transducer and configured to guide the ultrasonic waves generated by the ultrasound transducer to the outside.
The washing machine may further include a pulsator disposed in the drum and configured to generate streams of water, wherein the ultrasound generator is coupled with an upper part of the pulsator.
The washing machine may further include an agitator disposed in the drum and configured to rotate, wherein the ultrasound generator is coupled with an upper part of the agitator.
The washing machine may further include a door disposed to cover an opening of the tub, wherein the ultrasound generator is coupled with an inner side of the door.
The washing machine may further include: a pulsator disposed in the drum and configured to generate streams of water; and a door disposed to cover an opening of the tub, wherein if a plurality of ultrasound generators are provided, the plurality of ultrasound generators are respectively coupled with an upper part of the pulsator and an inner side of the door.
The washing machine may further include: an agitator disposed in the drum and configured to rotate; and a door disposed to cover an opening of the tub, wherein if a plurality of ultrasound generators are provided, the ultrasound generators are respectively coupled with an upper part of the agitator and an inner side of the door.
The washing machine may further include: a door; and a diaphragm configured to seal between the tub and the door, wherein the ultrasound generator is coupled with the diaphragm so as to contact washing water loaded in the drum.
The washing machine may further include: a door; a diaphragm configured to seal between the tub and the door; and a nozzle configured to jet water into the drum, wherein one end of the ultrasound generator is coupled with one end of the nozzle so as to apply acoustic pressure of ultrasonic waves to water jetted into the drum.
The other end of the ultrasound generator may be coupled with the diaphragm.
The drum may include one or more through-holes, and the ultrasound generator may be disposed between the tub and the drum, and transfer ultrasonic waves into the drum through the through-holes.
The tub may further include a support unit having a shape configured to support the ultrasound generator, and configured to adjust an incident angle of ultrasonic waves that are generated by the ultrasound generator.
The ultrasound generator may include an ultrasound transducer configured to generate ultrasonic waves, and an ultrasound horn coupled with the ultrasound transducer and configured to guide the ultrasonic waves generated by the ultrasound transducer to the outside, the ultrasound horn may include a first element coupled with the ultrasonic transducer, and a second element connected to the first element, and a diameter of the first element may be longer than a diameter of the second element.
A diameter ratio of the first element and the second element may be 2:1
A length ratio of the first element and the second element in an emission direction of ultrasonic waves may be 35:27.
A longitudinal section of the ultrasound horn may have a step shape.
The second element of the ultrasound horn may have an inwardly concave shape.
The second element of the ultrasound horn may have a conical shape.
These and/or other aspects of the disclosure will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In the following description, if it is determined that detailed descriptions for related art make the subject matter of the present disclosure obscure unnecessarily, the detailed descriptions will be omitted. In this specification, the terms “first” and “second”, as applied to detectable species, are used for the purposes of identification and do not imply any order of detection.
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the appended drawings.
Referring to
The drum 12 has a cylindrical shape wherein the top part opens, and a plurality of through-holes 12a are formed around the drum 12. A balancer 12b may be provided in the upper part of the drum 12 so that the drum 12 can stably rotate upon high-speed rotation.
Below the tub 11, a washing motor 14 to generate a driving force for rotating the drum 12 and the pulsator 13, and a power switching device 15 to transfer the driving force generated by the washing motor 14 to both or one of the drum 12 and the pulsator 13 may be provided.
The drum 12 may be connected to a hollow dehydrating shaft 16, and the washing shaft 17 installed in the cavity of the dehydrating shaft 16 may be connected to the pulsator 13 through a washing shaft connecting element 18.
The washing motor 14 may be a Direct Drive (DD) type motor having a variable speed function. The washing motor 14 may transfer a driving force to the drum 12 or the pulsator 13 according to rising/falling of the power switching device 15.
The washing motor 14 may be a universal motor composed of a field coil and an armature, or a Brush Less Direct Current (BLDC) motor composed of a stator and a rotor. However, the washing motor 14 may be any other motor as long as it can be applied to the washing machine 1. Also, the washing motor 14 may be a belt type.
The power switching device 15 may include an actuator 15a to generate a driving force for switching power, a rod element 15b to move linearly according to an operation of the actuator 15a, and a clutch element 15c connected to the rod element 15b and configured to rotate according to a movement of the rod element 15b.
The washing motor 14 may perform wetting cloth, dissolving detergents, washing, dipping and rising, and untangling cloth by rotating the washing shaft 17 forward or backward when coupling between the washing shaft 17 and the dehydrating shaft 16 is released to thus move the pulsator 13 in left and right directions.
Also, the washing motor 14 may rotate the washing shaft 17 and the dehydrating shaft 16 forward or backward when the washing shaft 17 is coupled with the dehydrating shaft 16 so as to rotate both the pulsator 13 and the drum 12 in the same direction, thereby performing a shower-rinsing process and a dehydrating process.
A water level sensor 19 for detecting a frequency changing according to a level of water to determine an amount (level) of water loaded in the tub 11 may be installed on the lower inner surface of the tub 11.
A drain 20 to discharge water loaded in the tub 11 to the outside may be formed in the bottom of the tub 11, and the drain 20 may be connected to a first drainpipe 21. A drain motor 22 to control drainage may be installed in the first drainpipe 21, and an outlet of the drain motor 22 may be connected to a second drainpipe 23 to discharge water to the outside.
In the upper part of the cabinet 10, a door 24 for opening or closing the washing machine 1 in order to put laundry into the drum 12 or to take laundry out of the drum 12 may be mounted.
In the upper part of the tub 11, an opening 25 to put laundry into the drum 12 or to take laundry out of the drum 12 may be formed, and the opening 25 may be opened or closed by the door 24.
Also, a water-supply pipe 26 to supply water to the tub 11 may be installed in the upper part of the cabinet 10. One end of the water-supply pipe 26 may be connected to an external water-supply source, and the other end of the water-supply pipe 26 may be connected to a detergent supply unit 27. Water supplied through the water-supply pipe 26 may be supplied to the tub 11 together with detergents via the detergent supply unit 27. The water-supply pipe 26 may include a water-supply valve 28 to control supply of water.
Meanwhile, the tub 11 may be supported by a suspension system 29 with respect to the cabinet 10, and a checker switch 30 to detect shaking that occurs when a user touches the drum 12 in order to take laundry out of the drum 12 may be installed between the tub 11 and the cabinet 10. In addition, when the drum 12 rotates eccentrically due to an unbalanced load of laundry, the checker switch 30 may detect excessive vibration of the tub 11 when the tub 11 hits the checker switch 30 before hitting the cabinet 10.
The ultrasound generator 80 may emit ultrasonic waves to washing water loaded in the drum 12 to generate bubbles, and may operate according to a voltage applied from a power supply unit 88. The power supply unit 88 may be configured as a separate power supply dedicated for the ultrasound generator 80, or the power supply unit 88 may be integrated into a power supply unit to apply a voltage to the washing machine 1. The ultrasound generator 80 may apply ultrasonic energy to the washing water so as to cause chaotic oscillation of bubbles. Acoustic pressure of the ultrasonic waves may depend on a displacement amplitude of the ultrasound generator 80. In other words, an ultrasonic wave condition to cause chaotic oscillation of bubbles may include at least one condition of a displacement amplitude condition of ultrasonic waves and an ultrasonic wave frequency and acoustic pressure condition. This will be described later.
Referring to
In the front, center part of the cabinet 10, a laundry hole to put laundry into the drum 120 or to take laundry out of the drum 120 may be formed, and a door 240 to open and close the laundry hole may be provided to cover the laundry hole. The door 240 may be connected to the cabinet 1000 rotatably by a hinge, and if the laundry hole is closed, the door 240 does not easily open due to a hook.
The tub 110 may be provided inside the cabinet 1000, and include a rear tub member 450 having a cylindrical shape, wherein the rear part of the rear tub member 450 is closed, and a front tub member 430 located ahead of the rear tub member 450. In the rear part of the rear tub member 450, a bearing 470 to rotatably fix the driving motor 140, and a bearing housing 460 may be provided. In the front part of the front tub member 430, an opening 430a to put laundry into the drum 120 or to take laundry out of the drum 120 may be formed.
A tub temperature sensor 480 to detect the inside temperature of the tub 110 may be installed inside the tub 110, and the tub temperature sensor 480 may be a thermistor in which electrical resistance changes depending on a temperature.
Also, the tub 110 may be connected to water supply pipes 260 and the detergent supply unit 270 via a link pipe 640 provided above the tub 110, and the tub 110 may be connected to a drain (not shown) via a drain pipe 590 provided below the tub 110.
The drum 120 may be rotatably positioned inside the tub 110. The drum 120 may include a drum body 500 having a cylindrical shape, a drum front plate 510 provided at the front of the drum body 500, and a drum rear plate 520 provided at the back of the drum body 500.
A plurality of through-holes 500b to make water loaded in the tub 110 flow into the drum 120 may be formed around the drum body 500, and a lifter 500a to lift laundry may be provided on the inner surface of the drum body 500. An opening 510a to put laundry into the drum 120 or to take laundry out of the drum 120 may be formed in the drum front plate 510, and a flange 530 to which the driving motor 140 to rotate the drum 120 is connected may be mounted on the drum rear plate 520.
The driving motor 140 may include a stator 410 fixed on the rear part of the tub 110, a rotor 540 rotating by magnetically interacting with the stator 410, a rotating shaft 550 wherein one end is connected to the rotor 540, and the other end penetrates the rear part of the tub 110 to be connected to the flange 530 mounted on the rear part of the drum 120, and a hole sensor (not shown) to detect a rotation displacement of the rotor 540. Also, the rotating shaft 550 may be rotatably fixed on the tub 110 by the bearing 470 and the bearing housing 460 installed in the rear part of the tub 110. The driving motor 140 may be a BrushLess Direct Current (BLDC) motor or a Alternating Current (AC) motor that can easily control a rotation velocity.
The water supply unit 560 may be provided over the tub 110, and may include the water supply pipes 260 to connect the detergent supply unit 270 to an external water supply source (not shown), and water supply valves 280 disposed one of the ends of the water supply pipes 260 to open or close the water supply pipes 260. The water supply valves 280 may be solenoid valves to open or close the water supply pipes 260 according to an electrical signal.
The detergent supply unit 270 may be provided over the tub 110, and connected to the tub 110 via the link pipe 640. The detergent supply unit 270 may include a detergent case 620 to contain washing detergents and rinsing detergents therein, and a detergent case housing 630 to accommodate the detergent case 620 therein.
The ultrasound generator 800 may be coupled with a diaphragm 700 to seal between the tub 110 and the door 240. The ultrasound generator 800 may emit ultrasonic waves to washing water loaded in the drum 120 to generate bubbles. The ultrasound generator 800 may operate according to a voltage applied from a power supply unit 880. The ultrasound generator 800 may penetrate the diaphragm 700 so as to face the inside of the drum 120. However, coupling between the ultrasound generator 800 and the diaphragm 700 is not limited to this. The ultrasound generator 800 may be connected to the surface of the diaphragm 700 through fixing elements such as bolts, or through an adhesive such as glue. Also, the ultrasound generator 800 may be disposed at any location as long as it can emit ultrasonic waves to washing water, although the ultrasound generator 800 is not coupled with the diaphragm 700.
The ultrasound generator 800 may apply ultrasonic energy to washing water so as to cause chaotic oscillation of bubbles. The ultrasonic energy may depend on a displacement amplitude of the ultrasound generator 800, a frequency, and acoustic pressure.
Meanwhile, in order to wash fabrics, it is necessary to appropriately control characteristic factors of ultrasonic energy. Particularly, a configuration for controlling the frequency, acoustic pressure, and displacement amplitude of ultrasonic waves is needed. A principle of washing by ultrasonic waves is based on four factors: acoustic streaming in which streams of fluid are made by acoustic energy; acoustic pressure gradient which is power generated due to changes in pressure by an ultrasound oscillator; dynamic pressure representing a pressure distribution by contraction/expansion of bubbles; and interface sweeping which is a torque generated when the interfaces of bubbles contact contamination particles. The dynamic pressure caused by contraction/expansion of bubbles, among the four factors, generates greatest power (energy), and the power reaches 1 GPa.
As shown in
That is, in order to show good washing performance (exceeding a washing performance reference value corresponding to dotted lines of
Acoustic pressure of ultrasonic waves may be adjusted by controlling the displacement amplitude of the ultrasound generator 80 (see
where c [m/s] represents the speed of sound, ρ [kg/m3] represents the density of air, f [kHz] represents a frequency, P[kPa] represents a pressure amplitude, S [μm] represents a displacement amplitude.
It can be understood from Equation (1) that the displacement amplitude of the ultrasound generator 80 has to be equal to or greater than 4.5 μm in the water in order to make acoustic pressure become equal to or greater than 600 kPa (under a frequency condition of 20 kHz).
If the frequency changes, acoustic pressure required to cause chaotic oscillation of bubbles may increase accordingly. This can be also verified from the graph of
In order to effectively wash soiled test fabrics Carbon Black requiring great mechanical power, controlling based on the chaotic oscillation areas of the ultrasound bubble maps as shown in
In order to maintain a displacement amplitude of 4.5 μm or more regardless of frequency in the water, an ultrasound generator 80 configured by coupling an ultrasound transducer 81 with an ultrasound horn 84, as shown in
As shown in
The displacement amplitude of ultrasonic waves that are generated by the ultrasound generator 80 may be in an range of 4.5 μm to 22.5 μm in washing water. If a frequency of ultrasonic waves generated from the ultrasound generator 80 is 20 kHz, acoustic pressure of the ultrasonic waves may be in the range of 600 kPa to 3000 kPa. This considers chaotic oscillation of bubbles that are generated through ultrasound emission for washing soiled test fabrics.
Also, the ultrasound horn (L0) 84 may include a first element (L1) 82 that is coupled with the ultrasound transducer 81, and a second element (L2) 83 that is connected to the first element 82, wherein the diameter D1 of the first element 82 may be greater than the diameter D2 of the second element 83. The diameter D1 of the first element 82 is defined as the section diameter of the end contacting the ultrasound transducer 81, and the diameter D2 of the second element 83 is defined as the section diameter of the end from which ultrasonic waves are emitted to the outside.
Referring to
Referring to
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The nozzle 860 may be coupled with a washing water supply pipe 660a to supply washing water. As shown in
As shown in
As shown in
As shown in
The washing machine 100 may further include a support unit 900 having a shape capable of supporting the ultrasound generator 800, and configured to adjust an incident angle of ultrasonic waves that are generated by the ultrasound generator 800.
The lifter 500a provided on the inner surface of the drum 120, and configured to lift laundry may be formed as a cross-shaped protrusion on the rear part of the drum 120, or as straight lined protrusions on the entire cylindrical wall of the drum 120. The lifter 500a may swirl washing water while raising and dropping laundry to mix the laundry, when the drum 120 rotates, thereby allowing the ultrasound generator 800 to uniformly apply ultrasonic waves to the laundry, and increasing a friction force between the laundry to improve washing efficiency.
As shown in
Therefore, since the washing machine according to the embodiment of the present disclosure includes the ultrasound generator in which the ultrasound horn is coupled with the ultrasound transducer to increase a displacement amplitude of the ultrasound generator and cause chaotic oscillation of bubbles, washing performance can be improved.
Also, the washing machine can effectively wash soiled test fabrics such as Carbon Black requiring great mechanical energy, while reducing a washing time.
Although a few embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the disclosure, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0008038 | Jan 2014 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
1838595 | Turner | Dec 1931 | A |
2446750 | Ferris | Aug 1948 | A |
3087776 | Anderson | Apr 1963 | A |
4727734 | Kanazawa et al. | Mar 1988 | A |
5307649 | Lim et al. | May 1994 | A |
5432969 | Oh | Jul 1995 | A |
5862684 | Park | Jan 1999 | A |
6497140 | Zeqiri | Dec 2002 | B1 |
7004182 | Duval | Feb 2006 | B2 |
7876030 | Taki | Jan 2011 | B2 |
20040159127 | Woo | Aug 2004 | A1 |
20050252538 | Vernon | Nov 2005 | A1 |
20110135534 | Bates | Jun 2011 | A1 |
20130233030 | Chindyasov | Sep 2013 | A1 |
20130255326 | Im et al. | Oct 2013 | A1 |
20150059415 | Greinnan | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
87102092 | Jul 1988 | CN |
1473980 | Feb 2004 | CN |
1508321 | Jun 2004 | CN |
1750783 | Mar 2006 | CN |
1814893 | Aug 2006 | CN |
1814893 | Aug 2006 | CN |
201058323 | May 2008 | CN |
102076435 | May 2011 | CN |
0 288 378 | Oct 1988 | EP |
0392586 | Oct 1990 | EP |
1 138 818 | Oct 2001 | EP |
1 550 755 | Jul 2005 | EP |
2 443 981 | Apr 2012 | EP |
2003-311077 | Nov 2003 | JP |
19980046482 | Sep 1998 | KR |
10-0195444 | Jun 1999 | KR |
2015097634 | Jul 2015 | WO |
WO 2015097634 | Jul 2015 | WO |
Entry |
---|
Machine translation of CN 1750783 A, dated Mar. 2006. |
Werner Lauterborn and Thomas Kurz, Physics of bubble oscillations, 2010 Rep. Prog. Phys. 73 106501. |
Machine translation of CN 1814893 A, dated Aug. 2006. (Year: 2006). |
Machine translation of KR 19980046482 A, dated Sep. 1998. (Year: 1998). |
European Search Report dated Mar. 26, 2015 in corresponding European Patent Application No. PCT/KR2015/000628. |
European Search Report dated Oct. 7, 2015 in corresponding European Patent Application No. 15151848.7. |
Chinese Office Action dated Feb. 23, 2018 in Chinese Patent Application No. 201510033104.7. |
Chinese Office Action dated Oct. 24, 2018 in Chinese Patent Application No. 201510033104.7. |
Chinese Office Action dated Apr. 2, 2019 in Chinese Patent Application No. 2015100331047. |
Number | Date | Country | |
---|---|---|---|
20150204001 A1 | Jul 2015 | US |