This application claims the benefit of Korean Patent Application No. 2002-8244 filed on Feb. 15, 2002, in the Korean Industrial Property Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to washing machines and, more particularly, to a washing machine having a wobbling device which causes a wobbling action of a washboard installed at an inner bottom surface of a spin-drying tub, so as to effectively wash clothes.
2. Description of the Related Art
Generally, washing machines are used to wash clothes by rotating a cylindrical rotary tub containing the clothes and wash water therein. Such washing machines have been typically classified into two types, that is, drum type washing machines and vertical shaft type washing machines. In the drum type washing machines, a rotary tub is horizontally set in a cabinet and is rotated around a horizontal axis of the cabinet in opposite directions. These actions repeatedly move the clothes seated on an inner lower surface of the rotary tub upward, and allow the clothes to be dropped from the top to the bottom inside of the rotary tub, due to gravity, to wash the clothes. The vertical shaft type washing machines are designed such that a rotary tub with a pulsator is vertically set in a cabinet, and is rotated around a vertical axis of the cabinet in opposite directions. The forced water currents generated by the pulsator wash the clothes placed inside the rotary tub of the vertical shaft type washing machines.
The present invention relates to vertical shaft type washing machines.
The top of the cabinet 1 is open to allow a user to place or remove the clothes from the spin-drying tub 3. A door 7 is hinged to an edge of the open top of the cabinet 1. The user is thus allowed to open the top of the cabinet 1 to place or remove the clothes from the spin-drying tub 3. A drain hose 8 extends from the bottom of the washing tub 2 to the outside of the cabinet 1, and discharges the wash water from the washing tub 2 to the outside after a washing mode operation.
The spin-drying tub 3 comprises a bottom part 3a, with a spin-drying shaft holder 9 exteriorly mounted to the bottom part 3a. The power transmission unit 6 has two shafts 6a and 6b. That is, the spin-drying shaft 6a of the power transmission unit 6 is coupled to the bottom of the spin-drying tub 3 by the spin-drying shaft holder 9, while the washing shaft 6b of the power transmission unit 6 passes through the interior of the spin-drying shaft 6a so as to be coupled to the pulsator 4. The pulsator 4 is installed on the bottom of the spin-drying tub 3. The washing shaft 6b rotates the pulsator 4 during the washing mode operation.
The above vertical shaft type washing machine with the pulsator 4 is operated as follows. When the washing machine is turned on, after placing clothes into the spin-drying tub 3, water is primarily fed into the washing tub 2. The reversible drive motor 5 is rotated to generate a rotating force, which is transmitted to the pulsator 4 through the washing shaft 6b of the power transmission unit 6. Accordingly, the pulsator 4 is rotated in opposite directions. Such a reversible rotating action of the pulsator 4 generates forced wash water currents inside the spin-drying tub 3, and the clothes are washed by being forcibly moved along with the forced wash water currents while coming into frictional contact with both an internal surface of the spin-drying tub 3 and with each other.
When such a washing mode operation is completed, after elapse of a predetermined period of time, the wash water is drained from the washing tub 2 to the outside of the washing machine through the drain hose 8 before a rinsing mode operation is started. After the rinsing mode operation, a high speed rotating force of the reversible drive motor 5 is transmitted to the spin-drying tub 3 through the spin-drying shaft 6a of the power transmission unit 6, thus rotating the spin-drying tub 3 in a direction at a high speed to spin-dry the clothes. When a spin-drying mode operation is completed, the washing machine finishes the operation of washing the clothes.
In the washing mode operation of the conventional vertical shaft type washing machine, the pulsator 4 is alternately rotated in opposite directions to generate the forced wash water currents in the spin-drying tub 3, thereby washing the clothes by the forced wash water currents. The clothes are thus forcibly moved in the opposite directions, and are twisted and tangled up to each other. Therefore, the conventional vertical shaft type washing machine abrades and damages the clothes during a washing operation, and forces a user to untwist and untangle the clothes after the washing operation. Accordingly, such a vertical shaft type washing machine is inconvenient to use and promotes rapid wear and tear of the clothes.
In addition, to generate the forced wash water currents, the pulsator 4 must be reversibly rotated in short time intervals during the washing mode operation. Thus, the reversible drive motor 5 consumes a lot of electric power while being repeatedly rotated in the opposite directions at such short time intervals. Such an alternating rotation of the reversible drive motor 5 also reduces the expected life span of the reversible drive motor 5.
Furthermore, the conventional vertical shaft type washing machine with the pulsator 4 is designed such that a desired washing effect is enhanced by forcibly rotating the clothes in the opposite directions using the forced water currents. Accordingly, such a design requires an excessive amount of water in the washing tub 2 during the washing mode operation. A large volume of the water required for the washing operation, in turn, requires an additional use of detergent, inevitably causing a greater harm of the environment. Recent trends show that consumers are making a conscious decision to save water and restrict the use of household chemicals to preserve the environment. Therefore, there is a need to solve the above-mentioned problems experienced by the conventional vertical shaft type washing machines.
Accordingly, it is an object of the present invention to provide a washing machine having a wobbling device which causes an upward and downward wobbling action of a washboard without rotating the washboard during a washing mode operation, thus effectively washing the clothes.
Additional objects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
To achieve the above and other objects of the present invention, there is provided a washing machine comprising a washing tub for containing wash water therein, a spin-drying tub rotatably set in the washing tub for containing clothes therein, a spin-drying shaft which rotates the spin-drying tub, a washing shaft which axially passes through and projects from a top end of the spin-drying shaft, and a wobbling device which is coupled to a projected end of the washing shaft and causes the clothes to wobble upward and downward to wash the clothes.
The wobbling device comprises an inclined rotary shaft which is arranged in an axial direction of the washing shaft at an angle of inclination, a first rotary unit which rotates in response to torque of the washing shaft, having a first sloping surface which is inclined in a radial direction of the washing shaft at a set angle of inclination, a second rotary unit which is arranged to be rotated relative to the first rotary unit, having a second sloping surface which corresponds to the first sloping surface of the first rotary unit, and a hole which is axially formed in the second rotary unit and rotatably receives the inclined rotary shaft therein, an actuating pin which is installed to and rotates along with one of the washing shaft, the first rotary unit and the inclined rotary shaft, a wobbling pin and a leveling pin which are provided on the second rotary unit at spaced positions, and a washboard which is arranged at an inner lower portion of the spin-drying tub, and wobbles in response to rotating of the actuating pin in contact with the wobbling pin and being leveled in response to rotating of the actuating pin in contact with the leveling pin.
The inclined rotary shaft passes through the hole of the second rotary unit so as to be projected at an upper end thereof from an upper end of the second rotary unit. The actuating pin is transversely mounted to the upper end of the inclined rotary shaft, and the leveling and wobbling pins are arranged on an upper surface of the second rotary unit at positions angularly spaced apart from each other at an angle of, for example, about 180°.
The first inclined surface is formed at an upper end of the first rotary unit, and the second inclined surface is formed at a lower end of the second rotary unit. Accordingly, the upper surface of the secondary rotary unit is leveled to have the washboard in a leveled position in response to the actuating pin being rotated in a first direction while coming into contact with the leveling pin, wherein an upper part of the first sloping surface meets an upper part of the second sloping surface. On the other hand, the upper surface of the secondary rotary unit is inclined to have the washboard in a wobbling position in response to the actuating pin being rotated in a second direction while coming into contact with the wobbling pin, wherein a lower part of the first sloping surface meets the upper part of the second sloping surface.
The washing machine may further comprise a vertical rotary shaft which is arranged between the washing shaft and the first rotary unit, and transmits the torque of the washing shaft to the first rotary unit, wherein the vertical rotary shaft is coupled at a upper end thereof to a lower end of the first rotary unit, and coupled at a lower end thereof to an upper end of the washing shaft.
These and other objects and advantages of the present invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
As shown in
A spin-drying shaft holder 9 is mounted to an exterior portion of a bottom part 3a of the spin-drying tub 3. The bottom part 3a couples a spin-drying shaft 6a of the power transmission unit 6 to the spin-drying tub 3. The spin-drying shaft 6a rotates the spin-drying tub 3 during a spin-drying mode operation. A washing shaft 6b of the power transmission unit 6 passes through the interior of the spin-drying shaft 6a, and is projected upward from a top end of the spin-drying shaft 6a so as to be coupled to a wobbling device 20.
The wobbling device 20 is provided inside the cabinet 1 at the bottom of the spin-drying tub 3. During a washing mode operation of the washing machine, the wobbling device 20 is selectively placed at the wobbling position as shown in
As shown in
The vertical rotary shaft 21 is coupled at its lower end to the upper end of the washing shaft 6b of the power transmission unit 6 through a tubular boss 70. The vertical rotary shaft 21 is coupled at its top end to a lower portion of the first rotary unit 30 by means of a first locking pin 32, which transversely passes through both the first rotary unit 30 and the vertical rotary shaft 21. The vertical rotary shaft 21 is thus rotated along with the first rotary unit 30 when the washing shaft 6b is rotated.
To couple the vertical rotary shaft 21 to the washing shaft 6b so as to transmit torque of the washing shaft 6b to the vertical rotary shaft 21 without failure, both the lower end of the vertical rotary shaft 21 and the upper end of the washing shaft 6b are machined at their external surfaces to have uniformly spaced spline ridges 21a and 6c, respectively. The tubular boss 70 is machined at its internal surface to have corresponding spline grooves 72. Therefore, the splined lower end of the vertical rotary shaft 21 is fitted into and coupled to the splined upper end of the boss 70. In the same manner, the splined upper end of the washing shaft 6b is fitted into and coupled to the splined lower end of the boss 70.
As shown in
Referring back to
The positional change of the wobbling device 20 between the wobbling position, which causes an inclined position of the washboard 60 for performing a washing mode operation as shown in
The inclined rotary shaft 22 is rotatably received by the second rotary unit 40 while being inclined relative to the vertical rotary shaft 21a at the same inclination angle as that of the first and second sloping surfaces 31 and 41, as best seen in FIG. 4. This inclined rotary shaft 22 is coupled at its lower end to the upper portion of the first rotary unit 30 by means of a second locking pin 33, which transversely passes through both the first rotary unit 30 and the inclined rotary shaft 22. The inclined rotary shaft 22 is thus rotated along with the first rotary unit 30. That is, the first rotary unit 30 is coupled to both the vertical rotary shaft 21 at its lower end and the inclined rotary shaft 22 at its upper end. Both the first rotary unit 30 and the inclined rotary shaft 22 are thus rotated at the same time when the vertical shaft 21 is rotated.
In such a case, the inclined rotary shaft 22 passes through an inclined hole 44 of the second rotary unit 40 prior to being coupled at its lower end to the first rotary unit 30. The inclined rotary shaft 22 and the hole 44 of the second rotary unit 40 are designed so as to have a small gap formed between the shaft 22 and the hole 44 to allow the shaft 22 to be rotated in the second rotary unit 40.
A support unit 80 is fitted over the second rotary unit 40, and rotatably supports the second rotary unit 40. The support unit 80 also supports the washboard 60 so as to have the washboard 60 wobble upward and downward without being rotated during a washing mode operation. In order to rotatably support the second rotary unit 40 relative to the support unit 80, a first bearing 42 is interposed between the second rotary unit 40 and the support unit 80. Two oil seals 43 are respectively provided at upper and lower ends of the first bearing 42 to seal the first bearing 42.
The upper surface of the second rotary unit 40 is a horizontal surface as compared to its inclined lower surface 41. The actuating unit 50 is arranged on the horizontal upper surface of the second rotary unit 40.
The actuating unit 50 comprises an actuating plate 51, which is fastened to the upper surface of the second rotary unit 40 by a locking bolt 55. Two spaced pins, that is, a leveling pin 52 and a wobbling pin 53, extend upward from the upper surface of the actuating unit 50 at spaced positions to a predetermined height. An actuating pin 54 is transversely mounted to the upper portion of the inclined rotary shaft 22 so as to have the actuating pin 54 be selectively stopped by either of the two pins 52 and 53 in accordance with a rotating direction of the inclined rotary shaft 22, thus rotating the second rotary unit 40 in a desired direction. The construction and operation of the actuating unit 50 will be described in more detail later herein.
The above actuating unit 50 is covered with a cap 85 so as to be isolated from the outside of the cap 85. The cap 85 is fastened to an upper end of the support unit 80.
The washboard 60 comprises a central boss part 61, which is formed at a central portion of the washboard 60. The central boss part 61 has a cylindrical shape and is fitted over an external surface of the support unit 80. A circular blade part 62 is integrally formed around an outside edge of the central boss part 61, and seats clothes thereon during a washing operation. The blade part 62 initially extends downward and outward from the outside edge of the boss part 61 to form a diffuser shape, and secondarily extends horizontally to form a horizontal circular shape. A plurality of perforations 64 are formed at the blade part 62 to allow an upward and downward circulation of wash water through the washboard 60.
As shown in
Referring back to
A covering cap 65 covers the upper end of the support unit 80 at the top of the central boss part 61 of the washboard 60, thus isolating the support unit 80 from the clothes seated on the washboard 60 during the washing operation. The covering cap 65 is fastened to the support unit 80, for example, through a screw type engagement.
As shown in
The inclined rotary shaft 22 passes through the inclined hole 44 of the second rotary unit 40 at a predetermined angle of inclination, so as to have the upper and lower ends of the inclined rotary shaft 22 project from both ends of the second rotary unit 40. In such a case, a small gap is formed between the inclined rotary shaft 22 and the hole 44 of the second rotary unit 40 so as to allow the shaft 22 to be rotated relative to the second rotary unit 40.
The upper end of the vertical rotary shaft 21 and the lower end of the inclined rotary shaft 22 are coupled to the first rotary unit 30 by the two locking pins 32 and 33, respectively. Therefore, the two shafts 21 and 22 are rotated along with the first rotary unit 30.
The second rotary unit 40 is rotatably held in the support unit 80 by the first bearing 42 having the oil seals 43. The washboard 60 is assembled to an external surface of the support unit 80.
The actuating plate 51 of the actuating unit 50 is fastened to the upper surface of the second rotary unit 40 by the locking bolt 55. The two spaced pins, that is, the leveling pin 52 and the wobbling pin 53, extend upward from the upper surface of the actuating unit 50 at two positions, which are angularly spaced apart from each other by, for example, an angle of about 180° as shown in FIG. 5. The actuating pin 54 is transversely mounted to the upper portion of the inclined rotary shaft 22. The actuating pin 54 of the inclined rotary shaft 22 is selectively stopped by either of the two pins 52 and 53 in accordance with a rotating direction of the inclined rotary shaft 22, thus rotating the second rotary unit 40 assembled with the actuating plate 51.
When the actuating pin 54 of the inclined rotary shaft 22 is rotated from a position shown by the two-dot chain line of
The second rotary unit 40 is rotatably set in the support unit 80 by the first bearing 42. Thus, it is necessary to stably hold the support unit 80 such that the support unit 80 is not rotated by a rotating action of the second rotary unit 40. To accomplish the above and other objects, a flexible holder 86 is installed at a position between the housing 24 and the support unit 80. The flexible holder 86 surrounds the first rotary unit 30 and a central portion of the housing 24. The flexible holder 86 is designed so as to be flexible in a vertical direction in response to a wobbling action of the washboard 60. Upper and lower ends of the flexible holder 86 are fastened to the support unit 80 and the housing 24 by, for example, fastening wires 87, respectively.
When the actuating pin 54 of the inclined rotary shaft 22 is rotated from the position shown by the two-dot chain line of
An operational effect of the vertical shaft type washing machine of the present invention having the wobbling device 20 will be described herein below.
When the washing machine is turned on after placing the clothes into the spin-drying tub 3, water is primarily fed into the washing tub 2. At the same time, the drive motor 5 is rotated to generate a rotating force, which is transmitted to the wobbling device 20 through the power transmission unit 6, thus actuating the wobbling device 20.
That is, while the water is fed into the washing tub 2, both the washing shaft 6b and the vertical rotary shaft 21 are rotated, for example, clockwise by the drive motor 5 at a low speed to rotate the spin-drying tub 3 at a low speed, and cause the clothes to be wetted by water. The inclined rotary shaft 22, coupled to the vertical rotary shaft 21 through the first rotary unit 30, is also rotated along with the two shafts 6b and 21. The inclined rotary shaft 22 is thus rotated clockwise at an angle of about 90° from the position shown by the two-dot chain line of
When the inclined rotary shaft 22 at such a leveling position is further rotated clockwise, the upper surface of the second rotary unit 40 is rotated along with the inclined rotary shaft 22 while maintaining the horizontal position of its upper surface. Both the support unit 80 and the washboard 60 maintain their horizontal positions without performing any wobbling action. In such a case, the spin-drying tub 3 is rotated at a low speed by the spin-drying shaft 6a, thus rotating the clothes laid on the washboard 60 and allowing the clothes to be uniformly wetted by the water fed into the washing tub 2.
When the washing shaft 6b in the above state is rotated counterclockwise, with the spin-drying shaft 6a stopped, the vertical rotary shaft 21, the first rotary unit 30 and the inclined rotary shaft 22 are simultaneously rotated counterclockwise. Therefore, the actuating pin 54 of the inclined rotary shaft 22 is rotated counterclockwise from the position of
When the actuating unit 50 is shifted from the position of
When the inclined rotary shaft 22 at such a wobbling position is further rotated counterclockwise, the second rotary unit 40 is rotated along with the inclined rotary shaft 22. In such a case, both the support unit 80 and the washboard 60 wobble upward and downward without being rotated. When both the support unit 80 and the washboard 60 wobble upward and downward without being rotated as described above, the washboard 60 imparts vertical impact energy to the clothes, and generates vertically directional water currents, thus washing the clothes. In such a case, the impact energy applied to both the clothes and the wash water is increased in proportion to the rotating speed of the washing shaft 6b. Therefore, it is possible to accomplish a desired washing effect by appropriately controlling both the amount of wash water and the rotating speed of the washing shaft in accordance with the amount of clothes to be washed.
When the washing mode operation is completed, after a predetermined length of time from a start of the washing operation, the wash water is drained from the washing tub 2 through the drain hose 8 prior to starting a rinsing mode operation which removes detergent from the clothes. After the rinsing mode operation, the spin-drying tub 3 is rotated at a high speed by the spin-drying shaft 6a to spin-dry the clothes. In such a case, the actuating pin 54 of the actuating unit 50 is rotated clockwise from the position of
In the washing mode operation, clothes are washed by the wobbling action of the washboard 60. That is, during the wobbling action of the washboard 60, the clothes are imparted with both mechanical impact energy acting in a vertical direction, and hydraulic impact energy caused by the wash water flowing through the perforations 64 of the washboard 60. Thus, it is possible to accomplish a desired washing effect with a small amount of water contained in the washing tub 2 where the clothes laid on the washboard 60 are merely wetted by the water. Accordingly, the washing machine of the present invention reduces the amount of water required in a washing operation, as compared to a conventional washing machine having a pulsator.
As described above, the wobbling device 20 includes the vertical rotary shaft 21, which is arranged between the washing shaft 6b and the first rotary unit 30. However, it is understood that the wobbling device 20 of the present invention may be fabricated without the vertical rotary shaft 21. That is, the washing shaft 6b may be directly coupled to the first rotary unit 30 in place of being indirectly coupled to the first rotary unit 30 through such a vertical rotary shaft 21, without affecting the functionality of the present invention.
In addition, the leveling pin 52 and the wobbling pin 53 are provided at the upper surface the actuating unit 50, which includes the actuating plate 51 assembled to the upper surface of the second rotary unit 40. However, it is understood that the positions of the two pins 52 and 53 may be changed without affecting the functionality of the present invention. That is, the two pins 52 and 53 may be directly formed at the upper surface of the second rotary unit 40 in place of being formed at the actuating plate 51.
Furthermore, the actuating pin 54 is transversely installed at the upper portion of the inclined rotary shaft 22. However, it is understood that the position of the actuating pin 54 may be changed. That is, the actuating pin 54 may be provided on any one of the first rotary unit 30, the vertical rotary shaft 21 and the washing shaft 6b. In such a case, both the leveling pin 52 and the wobbling pin 53 may be placed at appropriate positions of the second rotary unit 40 in accordance with the position of the actuating pin 54.
As described above, the present invention provides a vertical shaft type washing machine having a wobbling device which causes an upward and downward wobbling action of a washboard without rotating the washboard during a washing mode operation. Therefore, the washing machine does not cause clothes to be twisted and tangled up during the washing operation, thereby preventing abrasion and damage to the clothes during the washing operation. In addition, the washing machine is convenient to use as a user need not untwist and untangle the clothes after the washing operation.
In the washing machine of this invention, a washing shaft is rotated in one direction during the washing operation. Therefore, it is possible to reduce the consumption of electric power of a drive motor. In addition, the expected life span of the drive motor is increased.
Additionally, it is possible to accomplish a desired washing effect with a small amount of water (a low water level) in a washing tub, where the clothes laid on a washboard are merely wetted by the water. The desired washing effect is, in part, effectively accomplished by an upward and downward wobbling action of the washboard. Thus, the washing machine of the present invention requires less water and detergent to carry out a washing operation than the conventional washing machine. Accordingly, the washing machine of the present invention also provides a marketing advantage in light of the recent trend toward saving water and limiting the use of materials that pollute the environment.
Although a few embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2002-8244 | Feb 2002 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
2145453 | Miller | Jan 1939 | A |
2145454 | Miller | Jan 1939 | A |
2509264 | Cox | May 1950 | A |
2695510 | Clark | Nov 1954 | A |
2831333 | Smith | Apr 1958 | A |
2902851 | Fields | Sep 1959 | A |
2902852 | Fields | Sep 1959 | A |
2921460 | Aberle | Jan 1960 | A |
2931201 | Hubbard | Apr 1960 | A |
2948128 | Smith | Aug 1960 | A |
3412621 | Jacobs | Nov 1968 | A |
5460018 | Werner et al. | Oct 1995 | A |
5946949 | Park et al. | Sep 1999 | A |
6115863 | Mason et al. | Sep 2000 | A |
6227013 | Wyatt-Smith | May 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20030154750 A1 | Aug 2003 | US |