The present invention relates to a washing/drying machine and, particularly, to an improvement in a drying process to be performed by the washing/drying machine.
A prior-art washing/drying machine having a drying function is configured such that air in a washing tub in which garment is contained is heated by circulating the air from the washing tub through a drying air duct and, for dehumidification of hot and wet air flowing out of the washing tub, water is supplied into the drying air duct and heat-exchanged with the air in a drying process (see, for example, Patent Documents 1, 2 and 3).
Patent Document 1 proposes an arrangement which includes a water-cooled dehumidifier typically requiring about 6-liter water for dehumidification, and is configured such that bathwater is supplied as dehumidification water and, when the bathwater is exhausted, the drying process is continued by using tap water (see paragraphs [0003] to [0005] in Patent Document 1).
Patent Document 2 proposes a technique of controlling the supply amount of dehumidification water to be supplied for heat exchange based on a difference between the temperature of hot air flowing out of a washing tub before the heat exchange and the temperature of the dehumidification water after the heat exchange with the hot air without excess and deficiency of the dehumidification water, while ensuring effective dehumidification (see [SUMMARY] and paragraphs [0003] to [0008] and [0020] in Patent Document 2).
Patent Document 3 proposes a technique of performing an intermittent cooling water supply control by detecting the temperature of air taken out of a washing tub and heat-exchanged with cooling water and the temperature of the cooling water after the heat exchange with the air, calculating the average of the temperatures, and supplying the cooling water for the heat exchange based on the average in order to ensure higher drying capability and reduction of the consumption of the cooling water for water saving (see [SUMMARY] and [Claim 1] in Patent Document 3).
Patent Document 1: JP-A-2002-35492
Patent Document 2: JP-A-2003-236290
Patent Document 3: JP-A-2006-247185
The prior-art washing/drying machine is configured such that the air is taken out of the washing tub in which the garment is contained, and dehumidified through heat exchange with the cooling water and heated by a heater, and then circulated back into the washing tub in the drying process. Therefore, a greater amount of cooling water (dehumidification water) is required for the dehumidification of the circulated air. Although various proposals are made mainly for the saving of the cooling water, the prior art fails to sufficiently, improve the drying efficiency.
In view of the foregoing, it is a principal object of the present invention to provide a washing/drying machine which is capable of efficiently performing a drying process, and requires a shorter period of time for the drying.
It is another object of the present invention to provide a washing/drying machine which has a drying efficiency improved by increasing a dehumidification efficiency for dehumidifying air circulated through a drying air duct in a drying process.
It is further another object of the present invention to provide a washing/drying machine which ensures easier maintenance without adhesion of lint and other foreign matter to a drying air duct after a drying process.
It is still another object of the present invention to provide a washing/drying machine which is capable of accurately determining the end of a drying operation and automatically terminating the drying operation.
It is further another object of the present invention to provide a washing/drying machine which achieves energy saving in drying operation control.
According to an inventive aspect of claim 1, there is provided a washing/drying machine including: a washing tub; a tank for storing used water; a drying air duct disposed outside the washing tub and having opposite ends connected to the washing tub for use in a drying process; air blowing/heating means provided in the drying air duct for sucking air out of the washing tub through one of the opposite ends of the drying air duct, heating the sucked air and feeding the heated air back into the washing tub through the other end of the drying air duct in the drying process; a tank water circulation passage including a supply passage having opposite ends, one of which is connected to the tank and the other of which is connected to a first position of the drying air duct, and a recovery passage having opposite ends, one of which is connected to a second position of the drying air duct or the washing tub and the other of which is connected to the tank; a pump provided in the tank water circulation passage for pumping up the water from the tank through the supply passage to supply the water into the drying air duct from the first position and causing the water to fall through the drying air duct to feed the water back into the tank through the recovery passage from the second position or the washing tub to circulate the water; and control means which controls driving of the pump so as to circulate a smaller amount of water through the tank water circulation passage in a first half of the drying process and circulate a greater amount of water through the tank water circulation passage in a second half of the drying process.
According to an inventive aspect of claim 2, the washing/drying machine of claim 1 includes: a temperature sensor which detects an ambient temperature around the washing/drying machine; and tap water supply means which, when a temperature higher than a predetermined level is detected by the temperature sensor, stops the driving of the pump and supplies tap water to a predetermined position in the drying air duct.
According to an inventive aspect of claim 3, the washing/drying machine of claim 1 includes tap water supply means which stops the driving of the pump and supplies tap water to a predetermined position in the drying air duct during a cool-down operation at the end of the drying process.
According to an inventive aspect of claim 4, the washing/drying machine of claim 1 includes interruption control means which deactuates the air blowing/heating means for a predetermined period in the drying process.
According to an inventive aspect of claim 5, the washing/drying machine of claim 1 includes: an air temperature sensor provided in the drying air duct for detecting the temperature of the circulated air after heat exchange with the water supplied into the drying air duct; a water temperature sensor which detects the temperature of the water supplied into the drying air duct and heat-exchanged with the circulated air; and control means which performs a drying termination control operation based on a change in the sum of the temperatures detected by the air temperature sensor and the water temperature sensor.
According to an inventive aspect of claim 6, the washing/drying machine of claim 1 includes drain means which drains the water from the tank during a cool-down operation at the end of the drying process.
According to an inventive aspect of claim 7, the washing/drying machine of claim 1 includes: temperature detection means which detects the temperature of the air circulated through the drying air duct; and control means which controls driving of the air blowing/heating means based on the temperature detected by the temperature detection means.
According to an inventive aspect of claim 8, the control means controls the driving of the pump so that the amount of the water to be circulated through the tank water circulation passage in the first half of the drying process is great enough to be comparable with the amount of the water to be circulated through the tank water circulation passage in the second half of the drying process, if the temperature of the water contained in the tank is lower by at least a predetermined degree than a room temperature at the start of the drying process in the washing/drying machine of claim 1.
According to an inventive aspect of claim 9, there is provided a washing/drying machine including: a washing tub; a tank having a smaller internal volume for storing water used in one of a plurality of rinsing steps; a drying air duct disposed outside the washing tub and having opposite ends connected to the washing tub for use in a drying process; air blowing/heating means provided in the drying air duct for sucking air out of the washing tub through one of the opposite ends of the drying air duct, heating the sucked air and feeding the heated air back into the washing tub through the other end of the drying air duct in the drying process; a tank water circulation passage including a supply passage having opposite ends, one of which is connected to the tank and the other of which is connected to a first position of the drying air duct, and a recovery passage having opposite ends, one of which is connected to a second position of the drying air duct or the washing tub and the other of which is connected to the tank; a pump provided in the tank water circulation passage for pumping up the water from the tank through the supply passage to supply the water into the drying air duct from the first position and causing the water to fall through the drying air duct to feed the water back into the tank through the recovery passage from the second position or the washing tub to circulate the water; and control means which controls driving of the pump so as to circulate a smaller amount of water through the tank water circulation passage in a first half of the drying process and circulate a greater amount of water through the tank water circulation passage in a second half of the drying process.
According to an inventive aspect of claim 10, there is provided a washing/drying machine including: a washing tub; a tank having a smaller internal volume for storing water used in one of a plurality of rinsing steps; a drying air duct disposed outside the washing tub and having opposite ends connected to the washing tub for use in a drying process; air blowing/heating means provided in the drying air duct for sucking air out of the washing tub through one of the opposite ends of the drying air duct, heating the sucked air and feeding the heated air back into the washing tub through the other end of the drying air duct in the drying process; a tank water circulation passage including a supply passage having opposite ends, one of which is connected to the tank and the other of which is connected to a first position of the drying air duct, and a recovery passage having opposite ends, one of which is connected to a second position of the drying air duct or the washing tub and the other of which is connected to the tank; and a pump provided in the tank water circulation passage for pumping up the water from the tank through the supply passage to supply the water into the drying air duct from the first position and causing the water to fall through the drying air duct to feed the water back into the tank through the recovery passage from the second position or the washing tub to circulate the water.
According to the inventive aspect of claim 1, the water used and stored in the tank (e.g., water used in a rinsing step preceding the drying process) is recycled and circulated for use as the water to be supplied for the dehumidification of the air circulated through the drying air duct in the drying process. Even if a greater amount of water is used, water consumption is not increased. Therefore, a necessary and sufficient amount of water can be supplied mainly for proper heat exchange without consideration of the water consumption.
According to the inventive aspect of claim 1, the control operation is performed so as to supply a smaller amount of water in the first half of the drying process and supply a greater amount of water in the second half of the drying process. In the first half of drying process, it is preferred to quickly increase the temperature of the air circulated through the drying air duct for higher drying efficiency. Therefore, the water supply amount is reduced to increase the temperature of the air circulated through the drying air duct in a shorter period of time in the first half of the drying process. In the second half of the drying process, on the other hand, the air circulated through the drying air duct is hot and wet, so that it is preferred to dehumidify the air through the heat exchange between the water and the air for higher drying efficiency. Therefore, the water supply amount is increased for proper dehumidification of the air circulated through the drying air duct, thereby promoting the drying of the garment in the second half of the drying process.
In the second half of the drying process, foreign matter such as lint and dust generated from the garment is contained in the air circulated through the drying air duct to flow through the drying air duct. The foreign matter is liable to adhere to an inner wall of the drying air duct. Therefore, it is preferred to increase the water supply amount for washing away the lint contained in the circulated air and washing away the lint and other foreign matter adhering to the inner wall of the drying air duct.
In the second half of the drying process, efficient heat exchange can be achieved by increasing the amount of the water circulated through the tank water circulation passage and, at the same time, changing the flow rate of the air circulated through the drying air duct. In addition, the capability of removing lint and other foreign matter contained in the air (washing-away capability) can be improved.
Where the washing/drying machine is used at a higher ambient temperature (room temperature), the temperature of the recycling water stored in the tank is likely to rise, leading to inefficient heat exchange between the recycling water and the air. According to the inventive aspect of claim 2, the tap water is used instead of the recycling water stored in the tank for the dehumidification of the circulated air, if the ambient temperature detected by the temperature sensor is higher than the predetermined level. Since the temperature of the tap water is lower than the temperature of the recycling water stored in the tank, efficient heat exchange can be achieved to properly maintain the drying capability.
According to the inventive aspect of claim 3, the tap water is supplied, instead of the recycling water stored in the tank, into the drying air duct during the cool-down operation at the end of the drying process. During the cool-down operation, therefore, the air' circulated through the drying air duct is quickly cooled by the tap water, and the temperature of the garment in the washing tub is cooled by the cooled circulated air. Thus, the cool-down operation can be efficiently performed, thereby reducing the time required for the drying process.
According to the inventive aspect of claim 4, the air blowing/heating means is deactuated for a predetermined period in the drying process. This prevents the air blowing/heating means from suffering from reduction in operation reliability, which may otherwise occur when the air blowing/heating means is heated to a higher temperature due to continuous operation thereof.
Where the air blowing/heating means is temporarily deactuated, the circulation of the air through the drying air duct is stopped. This eliminates the possibility that air not heated by the heating means is circulated through the drying air duct, so that the washing/drying machine is substantially free from deterioration of the drying capability.
According to the inventive aspect of claim 5, the end of the drying operation is determined based on the sum of the temperatures detected by the air temperature sensor and the water temperature sensor (a value obtained by addition of the detected temperatures). Therefore, the end of the drying operation can be accurately determined.
An exemplary method for the determination of the end of the drying operation based on the change in the sum of the temperatures detected by the air temperature sensor and the water temperature sensor is as follows. A value of the sum of temperatures detected by the air temperature sensor and the water temperature sensor in the first half of the drying process is stored. In the second half of the drying process, the temperatures detected by the air temperature sensor and the water temperature sensor are monitored and, when the sum of the detected temperatures increases by at least a predetermined degree from the previously stored value of the sum, the end of the drying operation is determined.
According to the inventive aspect of claim 6, the water is drained from the tank during the cool-down operation. Therefore, the used water does not remain in the tank after completion of the drying process, so that the washing/drying machine is clean without generation of odors. Where the washing/drying machine is used in a cold region, the washing/drying machine is free from the freezing of the water remaining in the tank.
According to the inventive aspect of claim 7, the temperature increase of the air circulated through the drying air duct due to overheating of the air can be suppressed without impairment of the drying capability. Where the temperature of the air circulated through the drying air duct is excessively increased, heating means (e.g., a heater) may be stopped. Where air blowing means (e.g., a blower) is kept driven, however, lower temperature air would flow into the washing tub, thereby impairing the drying capability. According to the inventive aspect of claim 7, the driving of the heating means and the air blowing means are simultaneously controlled, whereby the temperature of the circulated air is kept at a predetermined temperature level or higher. Thus, an energy saving operation can be performed substantially without the impairment of the drying capability.
According to the inventive aspect of claim 8, if the temperature of the water stored in the tank (water temperature) is lower by at least the predetermined degree than the room temperature at the start of the drying process (e.g., (tank water temperature)≦(room temperature)−5° C.), a dehumidification effect provided by increasing a difference between the temperature of the air circulated through the drying air duct and the temperature of the water (dehumidification water) supplied to the drying air duct is more effective for the drying than the effect of reducing the time required for increasing the temperature of the air circulated through the drying air duct by reducing the amount of the water circulated through the tank water circulation passage. Therefore, a greater amount of water is circulated to be supplied into the drying air duct. This reduces the drying process time and the power consumption. Even in the first half of the drying process, the amount of lint, dust and other foreign matter adhering to the drying air duct can be reduced to improve the reliability by increasing the amount of the water circulated through the tank water circulation passage.
The inventive aspect of claim 9 provides the same effects as the inventive aspect of claim 1 and, in addition, makes it possible to reduce the internal volume of the tank in which the used water is stored (e.g., to about 8.5 liters). By employing the smaller volume tank, size increase of the overall washing/drying machine is suppressed. The tank has a smaller internal volume that is necessary and sufficient to continuously circulate the water through the tank water circulation passage without the need for storing the water in an amount greater than necessary.
The inventive aspect of claim 10 provides the same effects as the inventive aspect of claim 9 and, in addition, makes it possible to use a smaller volume tank for the washing/drying machine. Since the air is dehumidified through the heat exchange by circulating the water from the smaller volume tank in the drying process, the size increase of the overall washing/drying machine can be suppressed.
The construction of a washing/drying machine of a so-called oblique drum type according to one embodiment of the present invention will hereinafter be described specifically with reference to the drawings.
The washing/drying machine 1 includes a washing tub 3 disposed obliquely in a housing 2. The washing tub 3 includes an outer tub 4 in which water is retained in a laundry process, and a drum 5 rotatably accommodated in the outer tub 4. The drum 5 is rotated about a rotation shaft 7 by a DD motor 6 provided rearward of the outer tub 4. The rotation shaft 7 extends obliquely upward toward the front to provide a so-called oblique drum structure. An opening 8 of the drum 5 and an opening 9 of the outer tub 4 are covered and uncovered with a round door 10 attached to the housing 2. With the door 10 being opened, garment (laundry) is loaded into and unloaded from the drum 5 through the openings 8, 9.
One feature of this washing/drying machine 1 is that a tank 11 is provided below the washing tub 3 for storing used water (recycling water). The tank 11 has an internal volume of about 8.5 liters. As will be described later, water used for a rinsing operation is stored in the tank 11, and is used as heat-exchange water and cleaning water for removing lint and the like from an air circulation duct in a drying process.
An electrical component 12 including a main control board is provided in a lower front portion of the housing 2, and an electrical component 13 for display and input operation is provided in an upper front portion of the housing 2. The lower electrical component 12 includes a board temperature sensor 123 to be described later.
Further, a blower 21 to be driven in the drying process to be described later, and a drying heater A124 and a drying heater B125 for heating air circulated into the washing tub 3 by the blower 21 are provided in an upper portion of the housing 2.
In
A water plug 16, a water supply valve 17 for controlling supply of water flowing from the water plug 16 into a water passage, a water supply port unit 18, an ozone generator 19 which generates ozone for preparation of the cleaning air, the blower 21 for circulating air through a drying air duct 20 in the drying process, and a drying filter unit 22 for trapping foreign matter such as lint contained in the air circulated through the drying air duct 20 by the blower 21 are provided above the washing tub 3.
In the laundry process, tap water supplied from the water plug 16 is retained in the washing tub 3 by controlling the water supply valve 17. At this time, water containing a detergent dissolved therein can be retained in the washing tub 3 by causing water to flow into the washing tub 3 through a detergent container 29 in the water supply port unit 18. In the laundry process, the drum 5 is rotated by the DD motor 6. Further, the water is pumped out of the washing tub 3 through the filter unit 15 by a circulation pump 25, and the pumped water is guided to a rear upper side of the outer tub 4 through a water circulation passage (second water circulation passage 57) and flows down from the upper side and then back into the washing tub 3 from a lower portion of a rear face of the washing tub 3 for circulation. A gas-liquid mixer 27 is provided in the water circulation passage, and the ozone generated by the ozone generator 19 is mixed with the water flowing down from the upper side in the gas-liquid mixer 27. With the ozone mixed with the water, the water is cleaned by the strong oxidation and sterilization power of the ozone. That is, the water in the washing tub 3 is circulated in the laundry process, and cleaned by mixing the ozone with the circulated water for use in the laundry process. As shown in
In the drying process, air is sucked out of the washing tub 3 from the lower portion of the rear face of the washing tub 3, and guided upward through the drying air duct 20. After foreign matter is filtered away from the air by the drying filter unit 22, the air flows into the washing tub 3 from an upper front side of the washing tub 3 for circulation. High-temperature high-humidity air is heat-exchanged with water to be thereby cooled and dehumidified when being circulated through the drying air duct 20. For this purpose, water is supplied into the drying air duct 20. That is, the washing/drying machine is configured such that water is pumped up from the tank 11 by a drying pump 23, and supplied to a predetermined portion (first position) of the drying air duct 20 via a duct water supply passage 24 such as of a hose. Though not shown, a water passage for supplying the tap water into the drying air duct 20 from the water plug 16 via the water supply valve 17 as required is also provided.
As shown in
While the construction and the operation of the washing/drying machine 1 have been thus described, the overall construction, particularly water passages and air passages, of the washing/drying machine 1 will be described in detail with reference to
The water plug 16 is connected to an inlet of the water supply valve 17. The water supply valve 17 has four outlets through which the water is selectively caused to flow out. A first outlet port 28 of the water supply valve 17 is connected to the water supply port unit 18, so that the water flows through the detergent container 29 provided in the water supply port unit 18. Thus, the water containing the detergent dissolved therein is supplied into the washing tub 3 through a water supply passage 30 to be thereby retained in the washing tub 3. A second outlet port 31 of the water supply valve 17 is also connected to the water supply port unit 18. Water supplied from the second outlet port does not flow through the detergent container 20, but flows into the washing tub 3 through a water supply passage 32. Further, the water flowing into the water supply port unit 18 from the second outlet 31 is partly supplied as priming water into a bathwater pump 34 through a priming water passage 33. When the bathwater pump 34 is driven, bathwater in a bathtub 35 is pumped up into the water supply port unit 18 through a water passage 37, and flows into the washing tub 3 through the water supply passage 30 or the water supply passage 32.
A third outlet port 38 of the water supply valve 17 is connected to a predetermined portion of the drying air duct 20 via a water passage 39. A fourth outlet port 40 of the water supply valve 17 is connected to a predetermined portion of the drying air duct 20 via a water passage 41. The third outlet port 38 has a relatively small diameter, while the fourth outlet port 40 has a relatively great diameter. With the third outlet port 38 being open, therefore, a relatively small amount of water is supplied into the drying air duct 20 through the water passage 39. This water is brought into contact with the circulated high-temperature high-humidity air in the drying air duct 20 for the heat exchange. With the fourth outlet port 40 being open, a relatively great amount of water is supplied into the drying air duct 20 through the water passage 41. This water is used for washing away lint and other foreign matter contained in the air circulated upward in the drying air duct 20 and for washing away lint and other foreign matter adhering to an inner wall of the drying air duct 20.
In the laundry process (a washing step and a rinsing step), water is retained in the washing tub 3. A drain port 42 is provided in a lowermost bottom portion of the washing tub 3 (more specifically, in a lowermost bottom portion of the outer tub 4). An inlet port of a first drain valve 44 is connected to the drain port 42 via a water passage 43, and an outlet port of the first drain valve 44 is connected to an inlet port 151 of the filter unit 15 via a water passage 45. With the first drain valve 44 being closed, water can be retained in the washing tub 3 (outer tub 4). A water level in the washing tub 3 is detected by a water level sensor 47 based on a change in pressure in an air hose 46 branched from the water passage 43 and extending upward.
The filter unit 15 includes a case 150, and a filter body 83 accommodated in the case 150 for trapping foreign matter. The case 150 has a drain port 152, a first outlet port 153 and a second outlet port 154 in addition to the aforementioned inlet port 151. An inlet port of a second drain valve 48 is connected to the drain port 152, and an outlet port of the second drain valve 48 is connected to an external drain hose 50 and a drain trap 51 via a water passage 49. With the first drain valve 44 and the second drain valve 48 being open, the water in the washing tub 3 is drained into the drain trap 51 through the drain port 42, the water passage 43, the first drain valve 44, the water passage 45, the filter unit 15, the drain port 152, the second drain valve 48, the water passage 49 and the external drain hose 50. One end (lower end) of an overflow water passage 52 is connected to the water passage 49. The other end (upper end) of the overflow water passage 52 communicates with an overflow port 53 of the outer tub 4. Therefore, if water is retained in the washing tub 3 in excess to a water level not lower than a predetermined level, water overflows from the overflow port 53, and drained into the drain trap 51 through the overflow water passage 52, the water passage 49 and the external drain hose 50 irrespective of the opening/closing state of the second drain valve 48.
An air pressure adjusting hose 54 is connected to a vertically middle portion of the overflow water passage 52 and the inlet port 151 of the filter unit 15. With the provision of the hose 54, the internal air pressure of the washing tub 3 is equal to an air pressure on the side of the inlet port 151 of the filter unit 15, thereby preventing the back flow of water in the filter unit 15 and other trouble.
One end of a first water circulation passage 55 is connected to the first outlet port 153 of the filter unit 15, and the other end of the first water circulation passage 55 is connected to a suction port of the circulation pump 25. One end of the second water circulation passage 57 is connected to an outlet port of the circulation pump 25. The second water circulation passage 57 extends upward to a position higher than an ordinary water level up to which the water is retained in the washing tub 3, and the other end of the second water circulation passage 57 is connected to a U-turn portion 26 which is U-turned from an upward direction to a downward direction. An upper end of a venturi tube 58 of the gas-liquid mixer 27 is connected to the U-turn portion 26. One end (upper end) of a third water circulation passage 59 is connected to a lower end of the venturi tube 58, and the other end (lower end) of the third water circulation passage 59 is connected to the lower portion of the rear face of the washing tub 3 (outer tub 4).
With the aforementioned arrangement, a predetermined amount of water is retained in the washing tub 3, and the circulation pump 25 is driven with the first drain valve 44 being open and with the second drain valve 48 being closed in the washing step and/or the rinsing step, whereby the water retained in the washing tub 3 is circulated from the drain port 42 through the water passage 43, the first drain valve 44, the water passage 45, the inlet port 151, the case 150, the first outlet port 153, the first water circulation passage 55, the circulation pump 25, the second water circulation passage 57, the U-turn portion 26, the venturi tube 58 and the third water circulation passage 59 into the washing tub 3.
The venturi tube 58 has an air inlet port 60, and the ozone generator 19 is connected to the air inlet port 60 via an air tube 61. If the ozone generator 19 is actuated when water flows through the venturi tube 58, the cleaning air containing the ozone generated by the ozone generator 19 flows through the air tube 61 and then into the venturi tube 58 through the air inlet port 60. A fundamental reason for the flow of the cleaning air into the venturi tube 58 is that there is a pressure difference (negative pressure) caused by the water flowing through the venturi tube 58. When the ozone is mixed with the circulated water, the circulated water is cleaned by the strong oxidation and sterilization power of the ozone. Thus, the laundry process can be performed in the washing tub 3 with the use of the cleaned water.
One end (upper end) of a storage water passage 62 is connected to the second outlet port 154 of the filter unit 15, and the other end (lower end) of the storage water passage 62 is connected to an inlet port of a water storage valve 63. An outlet port of the water storage valve 63 is connected to the tank 11. When the water storage valve 63 is opened with the first drain valve 44 being open, with the second drain valve 48 being closed and with the circulation pump 25 being deactuated after the completion of the rinsing step, for example, the water used for the rinsing operation and retained in the washing tub 3 flows into the tank 11 from the drain port 42 through the water passage 43, the first drain valve 44, the water passage 45, the inlet port 151, the case 150, the second outlet port 154, the storage water passage 62 and the water storage valve 63 by gravity (natural falling). Thus, the water used for the rinsing operation is stored as recycling water in the tank 11.
An overflow port 64 is provided at an upper portion of the tank 11. One end of a water passage 65 is connected to the overflow port 64, and the other end of the water passage 65 is connected to a middle portion of the overflow water passage 52. If water is retained in the tank 11 to a water level not lower than a predetermined level, the water overflows to the drain trap 51 from the overflow port 64 through the water passage 65, the overflow water passage 52, the water passage 49 and the external drain hose 50.
In the washing/drying machine 1, the used water is retained in the tank 11, and reused as the recycling water in the drying process.
The washing/drying machine 1 includes the drying air duct 20 for a drying function. The drying air duct 20 is disposed outside the washing tub 3 (outer tub 4). The drying air duct 20 is an air duct through which air sucked out of the washing tub 3 through the lower portion of the rear face of the outer tub 4 is circulated to flow into the washing tub 3 from a front upper portion of the outer tub 4. The drying air duct 20 includes a connection pipe 66, a filter blower unit 70 (including the blower 21 and the drying filter unit 22), and a connection pipe 67. As described with reference to
The air sucked out of the washing tub 3 is dehumidified in the drying air duct 20. Further, the foreign matter such as lint contained in the air circulated through the drying air duct 20 and the foreign matter adhering to the inner wall of the drying air duct 20 are washed away. For this purpose, the recycling water retained in the tank 11 is circulated to flow through the drying air duct 20.
A suction port of the drying pump 23 is connected to the tank 11. One end of the duct water supply passage 24 is connected to an outlet port of the drying pump 23, and the other end of the duct water supply passage 24 is connected to the first position of the drying air duct 20. In the drying process, water flows through the duct water supply passage 24 to be supplied into the drying air duct 20 from the first position of the drying air duct 20 upon actuation of the drying pump 23. As described above, the supplied water is heat-exchanged with the air circulated upward from the lower side in the drying air duct 20, and washes away the lint and other foreign matter contained in the air and the foreign matter adhering to the inner wall of the drying air duct 20. Water flowing down together with the lint and other foreign matter in the drying air duct 20 further flows into the filter unit 15 from the lower portion of the outer tub 4 through the drain port 42, the water passage 43, the first drain valve 44 and the water passage 45. Then, the lint and other foreign matter are trapped and filtered away in the filter unit 15, and water free from the foreign matter flows back into the tank 11 from the second outlet port 154 through the storage water passage 62 and the water storage valve 63.
The washing/drying machine may be configured such that the water flowing down in the drying air duct 20 is drained, for example, from a lower end (second position) of the drying air duct 20 and flows back into the tank 11 rather than into the outer tub 4.
In the drying process, a great amount of water is required for the heat exchange in the drying air duct 20 and for the removal of the lint and other foreign matter adhering to the inner wall of the drying air duct 20. The washing/drying machine 1 is configured such that the used water stored in the tank 11 is recycled to be used for the heat exchange and the removal of the foreign matter. Thus, drastic water saving can be achieved. Since the water is circulated from the tank 11, the volume of the tank 11 is reduced. Even with the provision of the tank 11, the outer size of the washing/drying machine is not increased.
The ozone generator 19 is connected to the filter blower unit 70 via an air tube 71. In the drying process, the cleaning air containing the ozone generated by the ozone generator 19 is sucked into the filter blower unit 70 upon actuation of the ozone generator 19, and mixed with the air to be circulated into the washing tub 3. As a result, the garment to be dried can be deodorized and sterilized.
Water resulting from the filtering by the filter unit 15 (see
The water circulation passage structure thus includes the second water circulation passage 57 for guiding the water to the position higher than the water level 72 in the outer tub 4, and the U-turn portion 26 for reversing the flow direction of the water guided upward. Therefore, the gas-liquid mixer 27 can be located at the position that is higher than the water level 72 in the outer tub 4. In addition, the gas-liquid mixer 27 can be disposed as extending vertically. Thus, a water pressure occurring due to the water level 72 does not hinder the flow of the water in the gas-liquid mixer 27, but the water swiftly flows down from the upper side due to the pumping force of the circulation pump 25 as well as the gravity. As a result, a negative pressure occurs in the flow passage, so that the ozone-containing cleaning air can be efficiently mixed with the water in the gas-liquid mixer 27.
Further, the water falling down through the gas-liquid mixer 27 is guided downward through the third water circulation passage 59, and circulated into the outer tub 4 from the lower portion of the rear face of the outer tub 4. The circulated water, which contains minute bubbles of the ozone-containing cleaning air, flows back into the washing tub 3 from the lower portion of the outer tub 4. Thus, the minute bubbles of the cleaning air contained in the water move upward from the lower side in the washing tub 3, whereby the garment is efficiently cleaned, sterilized and deodorized in the washing tub 3.
The third water circulation passage 59 is not necessarily required to extend to the lower portion of the outer tub 4, but may be configured to cause the water to flow into the outer tub 4 from a vertically middle portion of the rear face of the outer tub 4 for the circulation.
A reference numeral 61 denotes the air tube. The ozone-containing cleaning air is supplied into the gas-liquid mixer 27 through the air tube 61.
The water falling down from the U-turn portion 26 swiftly flows into the upstream flow passage 78, and its flow rate is increased in the restrictive flow passage 77. Therefore, a negative pressure occurs to permit the air intake from the buffer chamber 75 through the air intake hole 80. The negative pressure causes the ozone-containing cleaning air to flow into the restrictive flow passage 77 from the buffer chamber 75 through the air intake hole 80, whereby the cleaning air is mixed in the form of minute air bubbles with the flowing water.
There is a possibility that, when the water flow in the restrictive flow passage 77 is stopped, the water would flow into the buffer chamber 75 through the air intake hole 80 and further flow back to the ozone generator 19 (see
In this embodiment, the inner diameter of the restrictive flow passage 77 is Ø=8 mm. As will be described later, the inner diameter Ø is greater than a filter mesh diameter of the filter unit 15. As a result, there is no fear that the restrictive flow passage 77 would be clogged with foreign matter such as lint contained in the flowing water.
Next, the structure of the filter unit 15 will be described.
As described with reference to
Referring to
With the front fixture plate 159 and the fixture legs 160 attached to the housing 2 of the washing/drying machine 1, the case 150 has an elongated shape extending obliquely downward rearward from the front side. The case 150 has a hole (not shown) provided in an upper surface 150a thereof, and the inlet pipe 155 is attached to the upper surface 150a for communication with the hole. As described with reference to
The case 150 has right and left side surfaces and a bottom surface which collectively define a seamless case lateral/bottom surface 150b arcuately bulged downward.
The drain pipe 156 projects laterally from the case lateral/bottom surface 150b in a direction crossing a longitudinal axis of the case 150, more specifically perpendicularly to the longitudinal axis of the case 150, and its distal end serves as the drain port 152. The drain pipe 156 projects from an innermost longitudinal end portion of the case 150 (from a lower end portion of the obliquely extending case 150).
The outlet pipe 157 has a longitudinally middle portion which is generally perpendicularly bent, and is fixed to a portion of the case 150 intermediate between a fixing position of the inlet pipe 155 and a fixing position of the drain pipe 156 as seen longitudinally of the case 150. The outlet pipe 157 is fixed to the case 150 as projecting laterally from the lateral/bottom surface 150b of the case 150, and a distal end of the portion bent at about 90 degrees is defined as the second outlet port 154. The outlet pipe 158 is connected to the outlet pipe 157 as being branched from the outlet pipe 157, and a distal end of the pipe 158 is defined as the first outlet port 153. As described with reference to
The front fixture plate 159 has a filter insertion port 162. The filter insertion port 162 communicates with the inside space of the case 150. The filter body 83 (see
Ribs 113 are provided on the front fixture plate 159 on lower opposite sides of the filter insertion port 162 as projecting forward. The ribs 113 respectively have engagement holes 114 in which a movable member (see
Referring to
A front face of the basket 84 is closed with a sealing wall 94, and an annular flange 95 projects from the periphery of the sealing wall 94 (see
As shown in
As shown in
Referring next to
Thus, the ribs 92, 93 are provided as surrounding the recycling water filtering wall portion 90 formed with the smaller filtering holes 86. The ribs 92, 93 are opposed to the inner surfaces of the case 150 so as not to form a gap larger than the size of the smaller filtering holes 86 around the recycling water filtering wall portion 90. Thus, the water flowing into the basket 84 is filtered through the recycling water filtering wall portion 90 formed with the smaller filtering holes 86, and the water flowing through the recycling water filtering wall portion 90 and the water flowing through the gap defined between the ribs 92, 93 and the inner surfaces of the case 150 are permitted to flow into the outlet pipe 157. Thus, the water flowing into the outlet pipe 157 does not contain foreign matter greater in size than the smaller filtering holes 86.
The size (maximum diameter) of the smaller filtering holes 86 is set smaller than the inner diameter Ø of the restrictive flow passage 77 of the venturi tube 58 of the gas-liquid mixer 27, so that foreign matter having a size greater than the inner diameter Ø of the restrictive flow passage 77 is not present in the water flowing through the venturi tube 58. This prevents slow-down or stop of the water flow in the venturi tube 58, which may otherwise occur when the restrictive flow passage 77 having a reduced flow diameter is clogged with the foreign matter.
As shown in
As apparent from
Next, an arrangement for letting a user know that the operable lid 85 of the filter unit 15 is improperly operated and the filter body 83 is incorrectly mounted in the case 150 will be described.
With the cover 101 being open, the operable lid 85 of the filter unit 15 disposed behind the cover 101 is exposed. As described with reference to
In this embodiment, a movable member 103 is provided between the cover 101 and the operable lid 85. When the cover 101 is opened as shown in
With the filter body 83 fitted in the case 150 and with the operable lid 85 properly turned, an operation rib 104 of the operable lid 85 is oriented horizontally. With the operation rib 104 oriented horizontally, as shown in
In general, as shown in
However, if the sealing between the filter insertion port 162 and the operable lid 85 is incomplete with the operable lid 85 improperly operated and incorrectly turned as shown in
That is, if the operable lid 85 is not properly operated, the operation rib 104 is not oriented horizontally, but oriented vertically or obliquely with respect to the horizontal direction as shown in
If the user cannot close the cover 101, the user checks the state of the operable lid 85, and becomes aware that the operable lid 85 has been improperly operated.
If the operable lid 85 is not properly operated, the closing of the cover 101 is prevented. Thus, the user becomes aware that the user has improperly operated the operable lid 85 of the filter unit 15. This prevents the leak of the water from the filter unit 15.
Referring to
The right arm plate 105 has a greater length than the left arm plate 106 as measured anteroposteriorly and, therefore, a distal end portion of the right arm plate 105 projects farther forward than a distal end portion of the left arm plate 106. Therefore, the interference plate 107 has a distal edge extending obliquely from the right to the left as seen in plan and, hence, has a width which is greater on the right side than on the left side. The interference plate 107 has a rear edge which is curved arcuately forward. Since the right arm plate 105 is greater in length than the left arm plate 106, only the distal end portion of the right arm plate 105 of the movable member 103 is brought into contact with the inner surface of the cover 101 (see
If the operable lid 85 is improperly operated, the interference plate 107 interferes with (or hits against) the operation rib 104 of the operable lid 85 to prevent the movable member 103 from being pivoted further upward. Reinforcement bars 110 are respectively provided at junctions between laterally opposite ends of the interference plate 107 and the right and left arm plates 105, 106 as extending perpendicularly to surfaces of the interference plate 107, the right arm plate 105 and the left arm plate 106 so as to prevent easy flexure and deformation of the interference plate 107 even if the interference plate 107 hits against the operation rib 104.
With the movable member 103 pivoted upward, the interference plate 107 is located in generally parallel adjacent relation to the operation rib 104 of the operable lid 85 to prevent the movement of the operation rib 104. Thus, the interference plate 107 functions to prevent the operable lid 85 from being turned to be loosened due to vibrations.
The movable member 103 is pivotal about the engagement support bosses 108, 109. Gravity center adjusting members 111 for adjusting the gravity center of the movable member 103 respectively project from outer surfaces of the right arm plate 105 and the left arm plate 106, so that the movable member 103 can be pivoted forward away from the operable lid 85 by its own weight, as described above, when the cover 101 is opened.
Further, a stopper projection 112 is provided adjacent the engagement pivot boss 108 so as to stop the movable member 103 at a predetermined pivoting angular position when the movable member 103 is pivoted forward about the engagement pivot bosses 108, 109. Referring to
A control section 120 is a control center of the washing/drying machine 1, and includes a microcomputer and the like. The control section 120 is provided, for example, in the electrical component 12 (see
Temperatures detected by the drum outlet temperature sensor 121, the dehumidification water temperature sensor 122 and the board temperature sensor 123 are inputted to the control section 120.
As described with reference to
As described with reference to
As described with reference to
The drying heater A 124, the drying heater B 125, a blower motor 126, the drying pump 23, the water supply valve 17, the second drain valve 48 and the DD motor 6 are connected to the control section 120. The control section 120 controls the driving of these components connected thereto.
As described with reference to
The blower motor 126 is driven for circulating the air through the drying air duct 20 in the drying process. The blower 21 is rotated by the blower motor 126.
The drying pump 23 is driven for circulating the water from the tank 11 through the drying air duct 20 in the drying process. As previously described, the water pumped up from the tank 11 by the drying pump 23 is supplied to the drying air duct 20 for the heat-exchange, the cooling and the cleaning. The supplied water flows down through the drying air duct 20 to be circulated from the drain port 42 of the outer tub 4 back into the tank 11 through the water passage 43, the first drain valve 44, the water passage 45, the filter unit 15, the storage water passage 62 and the water storage valve 63. Therefore, the volume of the tank 11 (or the amount of the water to be stored in the tank 11) is not necessarily required to be sufficient to store all the water to be supplied to the drying air duct 20 in the drying process, but the tank 11 may have a smaller volume. By circulating the water from the tank 11, the water saving can be achieved for the water supply in the drying process.
The water supply valve 17 is controlled to supply colder tap water as the heat exchange water instead of the recycling water circulated from the tank 11 at the final stage of the drying process.
The second drain valve 48 is controlled to drain the water from the tank 11 at the end of the drying process. The DD motor 6 is controlled to rotate the drum 5 of the washing tub 3.
In the washing/drying machine 1, the drying heater A 124 is energized upon the start of the drying process, and the drying heater B 125 is energized, for example, with a delay of about 30 seconds. In order to suppress rush current, the two drying heaters 124, 125 are not simultaneously energized.
Further, the drying pump 23 is driven at a higher driving level. In order to check if water is stored in the tank 11, the drying pump 23 is driven at the higher driving level for a predetermined period upon the start of the drying process.
At the start of the drying process, the blower motor 126 is driven at a lower driving level. With the second drain valve 48 being closed, the water circulated from the tank 11 by the drying pump 23 is not drained to the external drain hose 50 (see
At the start of the drying process, the drying heater A124, the drying heater B125, the drying pump 23 and the blower motor 126 are driven in the aforementioned manner, whereby the air from the washing tub 3 slowly flows through the drying air duct 20, and is heated by the drying heater A 124 and the drying heater B 125 and circulated into the washing tub 3. Since the circulated air is heated by energizing the two drying heaters 124, 125, a drum outlet temperature TDO detected by the drum outlet temperature sensor 121 is relatively steeply increased.
On the other hand, a dehumidification water temperature Tw detected by the dehumidification water temperature sensor 122 is hardly increased, because the drying pump 23 is driven at the higher driving level to cause a greater amount of water to fall through the drying air duct 20 and the air flowing out of the washing tub 3 is not sufficiently heated.
In a drying startup period, this control state is continued, for example, for about 25 minutes. After a lapse of about 25 minutes from the start of the drying process, the driving of the blower motor 126 is switched from the lower driving level to an intermediate driving level and further to a higher driving level to increase the circulation rate of the air circulated through the drying air duct 20.
In an initial drying period from 25 minutes to 70 minutes after the start of the drying process, the drying heater A124 and the drying heater B125 are continuously energized, and the blower motor 126 is driven at the higher driving level. Further, the driving of the drying pump 23 is stopped. After the stop of the driving of the drying pump 23, the air circulated through the drying air duct 20 is not dehumidified, but heated by the drying heater A 124 and the drying heater B 125, so that the temperature of the circulated air, i.e., the drum outlet temperature TDO detected by the drum outlet temperature sensor 121, is increased.
On the other hand, the dehumidification water temperature sensor 122 does not detect the temperature of the dehumidification water, but mainly detects the moisture temperature of high-temperature high-humidity air flowing out of the washing tub 3, because the drying pump 23 is stopped. Since the air is heated, the detected dehumidification water temperature TW is steeply increased. In an intermediate drying period from 70 minutes to 130 minutes after the start of the drying process, the following control operation is performed.
The drying heater A 124 and the drying heater B 125 are continuously energized, and the driving of the blower motor 126 is switched to the intermediate level to slightly reduce the flow rate of the circulated air. Further, the drying pump 23 is driven at a lower driving level to circulate the water from the tank 11 for the heat exchange in the drying air duct 20. The drying pump 23 is driven to supply the dehumidification water from the tank 11 into the drying air duct 20, whereby the dehumidification water temperature TW detected by the dehumidification water temperature sensor 122 is steeply reduced and then gradually increased. This is because the heat of the circulated air is removed by the water due to the heat exchange between the water and the air in the drying air duct 20 to increase the temperature of the water.
The drum outlet temperature TDO detected by the drum outlet temperature sensor 121 is once reduced by the removal of the heat due to the heat exchange of the circulated air in a first half of the intermediate drying period, but the temperature of the circulated air is gradually increased with the gradual increase of the dehumidification water temperature.
The intermediate drying period ends, for example, after a lapse of 130 minutes from the start of the drying process, and is followed by a final drying period. An operation to be performed in the final drying period differs from the operation to be performed in the intermediate drying period in that the driving of the drying pump 23 is switched to the higher driving level and the driving of the blower motor 126 is switched to the lower driving level. The amount of the dehumidification water flowing through the drying air duct 20 is increased by driving the drying pump 23 at the higher driving level. In the final drying period, therefore, the dehumidification water temperature TW detected by the dehumidification water temperature sensor 122 is once reduced. However, the dehumidification water temperature is gradually increased by the continuous heat exchange between the dehumidification water and the circulated air. On the other hand, the flow rate of the air circulated through the drying air duct 20 is reduced because the driving of the blower motor 126 is switched to the lower driving level. Even if the temperature of the circulated air is reduced by the heat exchange, the drum outlet temperature TDO detected by the drum outlet temperature sensor 121 is generally leveled off and then gradually increased, because the circulated air is sufficiently heated by the drying heater A 124 and the drying heater B125.
In this embodiment, the drying heater A 124, the drying heater B 125 and the blower motor 126 are de-energized in synchronism for a predetermined period (e.g., 2 to 3 minutes) in the intermediate drying period and in the final drying period. A factor affecting the drying capability in the drying process is the temperature of the air circulated through the drying air duct 20, and it is desirable to keep the drum outlet temperature TDO at a predetermined higher temperature level. When the drying heater A 124 and the drying heater B 125 are de-energized in the drying process, the temperature of the circulated air (drum outlet temperature TDO) is generally reduced. However, the circulation of the air is stopped by de-energizing the blower motor 126 in synchronism with the de-energization of the drying heater A 124 and the drying heater B 125. Thus, the temperature of the circulated air is not reduced, but kept at a generally constant level. In this embodiment, a control operation is performed so as to once de-energize the drying heater A 124, the drying heater B 125 and the blower motor 126 in synchronism for several minutes in the intermediate drying period and in the final drying period. Thus, the energy saving operation can be achieved without impairing the drying capability.
Next, how to determine the end of a drying operation in the drying process will be described. The drying period varies depending upon the amount and the type of the garment to be dried. Therefore, the end of the drying operation is not controlled based on the elapsed time, but automatically determined through a temperature-based control operation as will be described below.
In
A room temperature TB detected as the board temperature by the board temperature sensor 123 is generally constant during the drying process, but is gently increased by a temperature increase occurring due to the operation of the washing/drying machine 1.
In the washing/drying machine 1 according to this embodiment, the temperature of the circulated air heated by the drying heater A 124 and the drying heater B 125 (or the heat-exchanged circulated air) is detected as the drum outlet temperature TDO by the drum outlet temperature sensor 121. Further, the temperature of the circulated air is indirectly detected as the dehumidification water temperature TW by the dehumidification water temperature sensor 122. As the drying process progresses, these two temperatures TDO, TW are increased. Therefore, the sum T2 of the drum outlet temperature TDO and the dehumidification water temperature TW is drastically increased with the drying operation time. Therefore, the end of the drying operation can be relatively accurately determined by detecting an increase in the sum T2. For reference, the determination of the end of the drying operation is based only on the temperature detected by the drum outlet temperature sensor 121 in the prior art.
Upon the determination of the end of the drying operation, the drying heater B 125 is once turned off as shown in
After a lapse of a predetermined period (e.g., 5 minutes) from the determination of the end of the drying operation based on the temperature difference Tx=T2−T1, the drying heater A 124 is first de-energized, and the drying heater B 125 is de-energized with a delay of several minutes. Simultaneously with the de-energization of the drying heater B 125, the drying pump 23 is stopped, and the second drain valve 48 is switched from a closed state to an open state. As a result, the water supplied from the tank 11 for the heat exchange is drained outside the machine through the water passage 49 and the external drain hose 50. The water can be entirely drained from the tank 11 by continuously driving the drying pump 23 for a short period of time after the opening of the second drain valve 48.
After the de-energization of the drying heater A124 and the drying heater B125, the driving of the blower motor 126 is switched to the higher driving level to increase the flow rate of the air circulated through the drying air duct 20 for a cool-down operation. The cool-down operation is performed for a predetermined period (e.g., about 10 minutes). The cool-down operation reduces the temperature of the garment dried in the washing tub 3. During the cool-down operation, the water supply valve 17 is preferably controlled to supply tap water into the drying air duct 20 through the water passage 39. Thus, the circulated air is heat-exchanged with the tap water during the cool-down operation to quickly reduce the temperature.
With reference to
Upon the start of the operation in the drying process, the control section 120 energizes the DD motor 6, the drying pump 23, the blower motor 126, the drying heater A 124 and the drying heater B 125 in this order (Step S1). Then, it is judged if the drying process is in the drying startup period, for example, before a lapse of 25 minutes after the start of the operation (Step S2). In the drying startup period, the two drying heaters 124, 125 are both energized to be driven at the higher driving level. The drying pump 23 is also driven at the higher driving level to circulate the cooling water at a higher flow rate. On the other hand, the blower motor 126 is driven at the lower driving level to circulate the air at a lower flow rate (Step S3).
The drying startup period ends and, in the initial drying period from 25 minutes to 70 minutes after the start of the drying process (YES in Step S4), the two drying heaters 124, 125 are kept energized. Further, the drying pump 23 is stopped to stop the circulation of the water from the tank 11, and the blower motor 126 is driven at the higher driving level (Step S5). Thus, the air in the washing tub 3 is quickly heated, so that the air temperature is increased in a short period of time. This control operation is efficient for the drying, thereby reducing the drying period.
In turn, it is judged if the drying process is in the intermediate drying period from 70 minutes to 130 minutes after the start of the drying process (Step S6). If the drying process is in the intermediate drying period, it is judged if time elapsed after the start of the drying process is from 120 minutes to 123 minutes (Step S7). Immediately after the start of the intermediate drying period, the control operation is performed through Steps S6, S7 and S9. That is, the two drying heaters 124, 125 are kept energized to be driven at the higher driving level, and the drying pump 23 is driven at the lower driving level to circulate the recycling water at a lower flow rate. Further, the blower motor 126 is driven at the intermediate driving level to circulate the air at an intermediate flow rate (Step S9). Thus, the circulated air is quickly heated to steeply increase the temperature of the air in the washing tub 3, whereby the drying of the garment is promoted for reduction of the drying operation period.
If the result of the judgment in Step S7 is YES in the intermediate drying period, the energization of the two drying heaters A124, B125 and the blower motor 126 are interrupted in synchronism (Step S8). The interruption of the energization of the heaters 124, 125 and the blower motor 126 makes it possible to achieve the energy saving in performing the drying process substantially without reduction in the temperature of the air in the drying air duct 20.
In turn, the control operation is performed through Step S10 and, if it is judged that the cool-down operation is performed, the two drying heaters A124, B125 are de-energized. Further, the driving of the drying pump 23 is stopped, and the tap water is supplied as the dehumidification water into the drying air duct 20 by the water supply valve 17. Then, the blower motor 126 is driven at the higher driving level to circulate the air at an increased flow rate. Thus, the heated air is rapidly circulated from the washing tub 3 to be thereby cooled. This correspondingly reduces the temperature of the garment in the washing tub 3 (Step S11).
If it is judged that the cool-down operation ends after being performed for a predetermined period (Step S12), the drying process ends.
If it is judged in Step S10 that the cool-down operation is not performed, the two drying heaters 124, 125 are kept energized, and the drying pump 23 is driven at the higher driving level to supply a greater amount of water into the drying air duct 20. Further, the driving of the blower motor 126 is switched to the lower driving level to circulate the air at a reduced flow rate (Step S13). By supplying the greater amount of water into the drying air duct 20 by means of the drying pump 23, foreign matter such as lint adhering to the inner surface of the drying air duct 20 is washed away. Thus, the drying air duct is cleaned at the end of the drying process.
The change in heater outlet temperature herein shown is affected only by the drying heater A 124 and the drying heater B 125, but not by the heat exchange between the circulated air and the cooling water.
When the two drying heaters 124, 125 are energized with a time lag and the blower motor 126 is driven at the lower driving level after the start of the drying process, the heater outlet temperature is steeply increased. When the driving of the blower motor 126 is switched from the lower driving level to the higher driving level to increase the flow rate of the air circulated through the drying air duct 20 in the initial drying period, the heater outlet temperature is once reduced and then gradually increased with the drying operation time. In the timing chart of
For reference, a temperature change observed when only the drying heater B 125 is de-energized and the blower motor 126 is continuously driven at the higher driving level is shown by a broken line. If only the drying heater B 125 is once de-energized, the heater outlet temperature (drying air temperature) is significantly reduced. The significant reduction in air temperature reduces the drying efficiency, thereby increasing the drying period. By switching the driving of the blower motor 126 to the lower driving level in synchronism with the switching of the drying heaters to the lower driving level as in this embodiment, the electric energy consumption is reduced without reduction in drying air temperature, thereby achieving the energy saving operation.
During the drying operation, the air circulated through the drying air duct 20 needs to be dehumidified and cooled. For this purpose, the drying pump 23 is driven to circulate the water from the tank 11. As previously described, the drying pump 23 is driven at the higher driving level in the drying startup period to check if the water is stored in the tank 11. In the initial drying period, the driving of the drying pump 23 is stopped mainly for increasing the heater outlet temperature (the temperature of the circulated air). In the intermediate drying period, the drying pump 23 is driven at the lower driving level to dehumidify the circulated drying air. In the final drying period, the drying pump 23 is driven at the higher driving level, whereby the heat exchange with the air is promoted to increase the drying efficiency.
In the control operation of
The present invention is not limited to the embodiment described above, but various modifications may be made within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-307038 | Nov 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/071732 | 11/28/2008 | WO | 00 | 5/25/2010 |