The present invention relates generally to waste disposal devices using packs of flexible tubing, and more particularly, to improved health care apparatus for the sanitary and odorless packaging and disposal of diapers and similar or related waste, medical waste, industrial waste and any other waste wherein sanitary and substantially odorless disposal is desired.
In households having an infant or very young child wearing disposable diapers, a diaper pail is usually placed in the bathroom or nursery for the receipt and disposal of soiled diapers.
One prior art construction of a diaper pail comprises a large garbage can-like container which receives a plastic bag. The bag is inserted into the interior of the container, with the upper portion thereof being folded over a top rim of the container to maintain the bag in engagement therewith. A cover member is attached to the container and is movable between a closed position in which the cover member is situated over the top rim of the container to cover the open end of the bag, and an open position in which the open end of the bag is uncovered and thereby enables the placement of a soiled diaper into the bag. A foot pedal is provided and coupled to the cover member to enable the cover member to be moved from the closed position to the open position by depressing the foot pedal.
Another prior art diaper pail is sold under the trademark “Diaper Genie”. Diaper pails of the “Diaper Genie”™ type are shown in U.S. Pat. No. 4,869,049 (Richards et al.), U.S. Pat. No. 5,590,512 (Richards et al.), U.S. Pat. No. 5,813,200 (Jacoby et al.), U.S. Pat. No. 6,128,890 (Firth) and U.S. Pat. No. 6,170,240 (Jacoby et al.), U.S. Patent Application Publication No. 2003/0213804 and International Publication No. WO 02/083525 A1.
The diaper pails shown in these patents generally comprise a container formed with an internal ring-shaped flange. A tubular core or cartridge rests on the flange and houses a continuous length of flexible, substantially non-resilient plastic tubing. A twist rim is rotatably coupled to the cartridge such that rotation of the twist rim causes twisting of the tubing. Means are provided to hold a diaper stationary when the twist rim rotates to twist the tubing and seal an end of the diaper to form a twisted closure. A cover is removably attached to the container and includes a lid. To prepare the diaper pail for use, the cover is removed, an end of the tubing is removed from the cartridge and pulled upward and tied into a knot. The knotted end is then placed into the container over an annular flange to form a waste insertion reservoir or chamber bounded by the tubing. The cover is re-attached to the container and the diaper pail is ready for use. In use, a soiled diaper is inserted into the waste insertion reservoir bounded by the tubing and the twist rim is then manually rotated as the diaper is held stationary to cause the diaper to be encapsulated in the tubing by the formation of a twist in the tubing above the diaper. Rotation of the twist rim also causes an additional amount of tubing to be removed from the cartridge and be pushed into the waste insertion reservoir to prepare it for a subsequent insertion of a diaper. The subsequent insertion of another diaper into the waste insertion reservoir causes the previously encapsulated diaper to pass into the hollow interior of the container. A series of connected, closed and encapsulated waste packages is created and the encapsulation process can be continued until the tubing is exhausted or the container is full. When the container is full but tubing remains, the uppermost package is severed above its upper twisted closure, the severed end of the tubing is tied into a knot and an access door pivotally connected to the bottom end of the container is opened for the removal of the packages.
A major inconvenience of diaper pails of the “Diaper Genie”™ type is that it is necessary to manually tie both ends of the tubing to use the diaper pail. That is, initially, upon insertion of a new cartridge, an end of the tubing is removed from the cartridge and must be tied into a knot, the knotted end then being pushed into the container to form the waste insertion chamber. Thereafter, when the container is full but tubing remains in the cartridge, the tubing is severed at a location above the upper twisted closure of the uppermost encapsulated waste package and the severed end of the tubing must be tied into a knot to prevent the series of waste packages from unwinding. The free end of the tubing remaining in the cartridge is again tied into a knot and pushed into the container to enable another series of encapsulated waste packages to be formed.
The necessary, multiple tyings of the tubing is bothersome and moreover, when the knots are not made sufficiently strong, unpleasant odors emanating from the waste packages can escape through the knots.
Another problem with diaper pails of the “Diaper Genie”™ type is that cutting the tubing is difficult and requires the use of a manually operable cutting instrument. This cutting instrument does not enable easy cutting of the tubing.
Yet another problem with diaper pails of the “Diaper Genie ”™ type is that the series of waste packages are removed from the diaper pail through an access door pivotally connected to the bottom end of the container. The series of waste packages has been found to be difficult to handle during transfer to a waste receptacle such as a trash bag. Cleaning of the device is also difficult.
Still another problem with known diaper pails and other waste pails is that the person inserting a diaper or other waste material (such as medical waste) into the pail may not remember to rotate the twist rim after insertion of a soiled diaper or other waste. In this case, the waste is not encapsulated by the tubing and malodorous vapors or other potentially hazardous contaminants can escape from the pail. Although this would not prevent future use of the pail as the twist rim could be rotated before the next insertion of waste, it would likely result in the release of odors or other potentially hazardous contaminants. A waste pail which provides for automatic formation of a twist above a waste item after insertion of the waste into the pail is therefore desirable.
Another problem with known diaper and waste pails is that because the diaper or waste pail comes into contact with the series of waste packages, it is liable to become dirty and cleaning of the pail is cumbersome as the access door must be opened, the pail turned over and then the inside surfaces cleaned. A diaper or waste pail which affords easier cleaning for the surfaces which come into contact with the series of waste packages is therefore desirable.
It is an object of the present invention to provide new and improved waste disposal devices, in particular for use in the disposal of disposable diapers, medical wastes and industrial waste.
It is another object of the present invention to provide improved waste disposal devices for the medical and health case industries for use in, for example, hospitals, doctors' offices, operating rooms, nursing homes, out-patient care and the home health care industry for disposal of non “sharps” including adult diapers, bloody/soiled bandages, dressings, disposable bibs, “chucks” and clothing, medical gloves and dialysis machine filters and other disposal medical waste.
It is still another object of the present invention to provide new waste disposal devices which use a canisterless pack of flexible tubing, i.e., the waste disposal devices can be used simply by inserting a replaceable pack of flexible tubing therein.
It is yet another object of the present invention to provide new and improved waste disposal devices which use flexible tubing to dispose of waste packages.
It is still another object of the present invention to provide new and improved waste disposal devices in which encapsulation of waste packages occurs automatically upon closing a cover of the device or depressing a foot pedal.
It is another object of the present invention to provide new and improved waste disposal devices in which waste products are encapsulated and compacted.
It is yet another object of the present invention to provide new and improved waste disposal devices in which tying of flexible tubing used to dispose of waste packages is unnecessary.
It is a further object of the present invention to provide a new and improved waste disposal device which effectively contains and prevents the release of odors from waste packages.
It is still another object of the present invention to provide new and improved cartridges for waste disposal devices which retain flexible tubing.
It is yet another object of the present invention to provide new and improved waste disposal devices in which a series of encapsulated waste packages are formed and can be removed from the device in an easy and expeditious manner.
It is another object of the present invention to provide new and improved diaper pails which alleviate a problem in known diaper pails, namely the need to remember to rotate a twist rim on a diaper pail after insertion of a soiled diaper in order to encapsulate the diaper.
It is yet another object of the present invention to provide an automatic twist mechanism for a diaper (or other waste) pail which eliminates problems associated with the required manual twisting of a twist rim in order to encapsulate a soiled diaper or other waste product.
In order to achieve at least some of the above objects, a waste disposal device in accordance with the invention generally includes a container defining a waste receiving chamber, an insert arranged in the container and defining a cavity adapted to contain a pack of flexible tubing for encapsulating waste packages after placement of the waste package in the container, with the encapsulated waste packages being retained in the waste receiving chamber, and an inner lid connected to the container and having a closed position covering an open top of the insert and an open position in which the open top of the insert is exposed to enable insertion of a replacement pack of flexible tubing into the cavity. The inner lid may be pivotally connected to the container or removable therefrom. The inner lid and insert define a dispensing opening through which the tubing passes during use of the waste disposal device. An outer lid is coupled to the container and is movable between an open position in which the waste receiving chamber is accessible and a closed position in which the waste receiving chamber is covered. A retention mechanism is arranged in the container to hold the waste package.
A rotation mechanism is provided to rotate the retention mechanism relative to the insert in order to cause a twist to be formed above a waste package when the waste package is being held by the retention mechanism and thereby encapsulate the waste package in the tubing. The insert is held stationary, i.e., so that it does not rotate when the retention mechanism rotates, by an appropriate anti-rotation mechanism.
Encapsulation of the waste package prevents the release of odors from the waste package and thus, the invention provides a convenient and sanitary disposal of the waste packages. Once encapsulated, the waste package is urged further into the container upon a subsequent insertion of another waste package. A series of encapsulated waste packages is thus created in the waste receiving chamber of the container, each package contained within a portion of the tubing and sealed at each end by the twisting process. However, the front end of the tubing is not sealed by the twisting process and must be closed by another method, possibly as disclosed below.
In order to maintain the inner lid in its closed position while enabling dispensing of the tubing, a locking mechanism is arranged in connection therewith. The locking mechanism cooperates with an outer wall of the container to allow manual unlocking and locking of the inner lid and thereby enable replacement of the tubing when needed.
The retention mechanism may include a gear rim and a frame attached thereto and having resilient springs which engage with the waste package. The rotation mechanism includes an elongate rack gear attached to the outer lid and a gear assembly engaging with the rack gear and the gear rim so that closing movement of the outer lid is converted into to rotational movement of the gear rim and thus the retention mechanism. Instead of a gear rim, a lower wall of the retention mechanism can be provided with a series of apertures extending around a circumference thereof so that a drive gear of the gear assembly engages with the apertures on the lower wall.
Since the pack of flexible tubing is separate from the insert, a new pack of flexible tubing is required which does not include a housing. That is, in the prior art, a pack of flexible tubing is sold as a unit with a rigid outer casing or housing with the entire unit being placed into a waste disposal device. In the invention, by contrast, the outer casing is not require since the container includes the reusable insert.
Therefore, a pack of flexile tubing for a waste disposal device in accordance with the invention includes a tube of plastic accordion folded into a cylindrical form and adhesive for bonding folds of the plastic tube together. The adhesive may be arranged on an outer surface of the plastic tube and at a plurality of locations about a circumference thereof. The adhesive may be strips of hot melt adhesive or strips of tape.
The invention, together with further objects and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals identify like elements, and wherein:
Several embodiments of waste disposal devices in accordance with the invention are described below. Generally, the waste disposal devices provide for relative rotation between a cartridge of flexible tubing and a retention unit, mechanism or member which holds a waste package stationary, i.e., either the cartridge is rotated relative to the retention unit or the retention unit is rotated while the cartridge is stationary. In this manner, the flexible tubing is caused to twist above the waste package thereby encapsulating the waste package in the tubing. The encapsulated waste package is then urged into a waste receiving chamber of the waste disposal device upon the insertion of another waste package into the device to be encapsulated or in some embodiments, provisions are made to enable the encapsulated waste package to be drawn into the waste receiving chamber without dependency on the subsequent insertion of another waste package. Repeated insertions of waste packages causes the formation of a series of encapsulated waste packages which can be removed from the container when the container is full or the tubing is exhausted.
It is contemplated that the features of different embodiments described herein can be used together with one another in the same waste disposal device to the extent possible. For example, new and unique cartridges of flexible tubing are disclosed below and it is envisioned that these cartridges can be used in all of disclosed waste disposal devices. On the other hand, some of the waste disposal devices described below are shown for use with this new cartridge. Nevertheless, it is contemplated that these waste disposal devices can be used with other cartridges including conventional cartridges, which might entail use of an appropriate adapter, one of which is described below.
Throughout the several views, the same reference numerals will be used to designate the same or similar elements. Variations in the elements may be present in the drawings and if so, it is to demonstrate that the elements can have different forms.
Referring first to
A removable cartridge 24 rests on the flange 18 and contains a circumferentially pleated length of flexible tubing 34. Tubing 34 may constitute a polybag. Cartridge 24 includes a cylindrical outer wall 26, a lower wall 28, an inner wall 30 and an upper wall 32 which together define a cavity for receiving the circumferentially pleated length of flexible tubing 34. A ring-shaped opening 36 is defined between the inner wall 30 and the upper wall 32 for passage of the tubing 34. Inner wall 30 is provided with an annular flange or lip 38 over which the tubing 34 passes into a waste insertion chamber 40 defined by the inner wall 28. Waste insertion chamber 40 aligns with the waste insertion opening 20 defined in the cover 14. The cartridge 24 is removed when the tubing 34 is used up by separating the cover 14 from the container 12, and a full cartridge is then placed onto the flange 18 and the cover 14 fit onto the container 12.
A rotation mechanism is provided to enable movement of the lid 22 to be converted into rotation of the cartridge 24. More particularly, the downward movement of the lid 22 causes automatic rotation of the cartridge 24, with the rotation of the cartridge 24 causing twisting of the tubing 34 above the waste package in the waste insertion chamber 40. In this manner, the twist rim present in conventional waste disposal devices of a similar type is not required.
Specifically, the mechanical rotation mechanism, which causes rotation of the cartridge 24 upon the downward movement of the lid 22 to its closed position, includes a toothed member such as a rack gear 42 fixed to the lid 22 and a cooperating gear assembly 44 arranged in connection with the container 12.
Rack gear 42 has an arcuate shape and includes a series of teeth formed on at least a portion of the outer arcuate surface with spaces being present between the teeth. An elongate slot 68 is provided in the cover 14 through which the rack gear 42 passes for engagement with the gear assembly 44 (see
Gear assembly 44 is mounted on a plate 46 so that the gear assembly 44 and plate 46 can be formed as a discrete component insertable into a pre-formed site in the container 12. As shown, plate 46 is mounted on an inner wall of the container 12 between mounting brackets 70 which define elongate slots for receiving opposed edges of the plate 46. In this manner, the plate 46 containing the gear assembly 44 thereon is easily and removably mounted to the container 12. The plate 46 can also be formed integral with the container.
A non-limiting embodiment of gear assembly 44 is shown in greater detail in
Gear assembly 44 further includes a coupled set of two gears 54,56 mounted on the plate 46 with gear 54 being in meshed engagement with gear 48. Gear 56 is spaced from the plate 46 and is positioned at the same level as the mounting bracket 50 which is thus shaped with an arcuate form to accommodate gear 56. Gear assembly 44 further includes another gear 58 also mounted on plate 46 in meshed engagement with gear 56. A gear 60 is attached to gear 58 and includes a series of projections 64 extending outward from a peripheral edge. Instead of gears, any type of toothed member can be used.
The engaged pairs of gears 48,54 and 56,58 are constructed in a conventional manner so that rotation of one gear of each pair causes rotation of the other gear in that pair. Specifically, with reference to
Further, gears 54, 56 and 58 are constructed to increase rotation of gear 60 in relation to the rotation of gear 48. That is, gear 54 has a smaller diameter than gear 48 and gear 56 so that gear 56 rotates faster than gear 48 while gear 58 has a smaller diameter than gear 56 and gear 60 so that gear 60 rotates faster than gear 56. One rotation of gear 46 will thus translate into multiple rotations of gear 60. The ratio of the diameters of the gears 46, 54, 56, 58, i.e., the gear ratio, can be designed to provide whatever appropriate rotation of gear 60 is needed to facilitate operation of the waste disposal device in the manner described below.
Referring to
The projections 66 can be formed integral with the outer wall 26 in which case, the cartridge 34 would be different than conventional cartridges which do not have any such projections. In the alternative, since it is desirable to be able to use conventional cartridges, an annular attachment rim could be provided. The conventional cartridge would be placed in the annular attachment rim, which would be sized to provide a snug fit and/or include a cooperating attachment mechanism in order to fix the cartridge to the attachment rim so that rotation of the attachment rim causes rotation of the cartridge. The attachment rim would include a series of projections adapted to mesh with the gear 60. In this manner, either the special cartridge including the integral projections 66 or a cartridge designed for use in conventional waste disposal devices of the same or a similar type could be used in this embodiment of the invention.
As shown in
The rotation mechanism as shown is designed to cause rotation of the cartridge 24 only upon closing movement of the lid 22. The gear train is thus arranged to prevent transmission of a rotational force by the rack gear 42 during movement of the lid 22 to its open position and allow transmission of a rotational force by the rack gear 42 during movement of the lid 22 to its closed position. Any known design and construction of gears to provide for a one-way transmission of rotational force could be applied in the invention. In the illustrated embodiment, a one-way transmission of rotational force is provided by the mounting of the shaft of the gear 48 in the aperture 52. As such, when the lid 22 is moved to its closed position, the shaft 48A of the gear 48 is pressed downward against a lower edge of the aperture 52 by the rack gear 42 so that the rack gear 42 frictionally engages gear 48 and causes rotation of gear 48 (see
It is also conceivable that a rotation mechanism could also be designed to cause rotation of the cartridge either only upon opening of the lid or upon both closing and opening of the lid.
The apparatus is designed to hold an encapsulated waste package stationary while the flexible tubing 34 is twisted. To this end, tongues or springs 72 are attached to the flange 18. The springs 72 hold a waste package 74 within the flexible tubing 34 stationary while the cartridge 24 is rotated to twist the flexible tubing 34 and seal the end of the waste package 74. Alternate arrangements for preventing rotation of the waste package 74 during rotation of the cartridge 34 include springs attached to the container 12 and projecting radially inward in order to engage the waste package 74, or springs attached to or formed integral with a retention member which in turn is attached to the container. Additional arrangements for preventing rotation of the waste package which may be incorporated into this embodiments are described below.
Moreover, other arrangements for holding a waste package stationary during twisting of the tubing which may be used in conjunction with the invention are disclosed in U.S. Pat. Nos. 4,869,049, 5,590,512, 5,813,200, 6,128,890 and 6,170,240, all of which are incorporated by reference herein. These patents also disclose several variations of a cutting device that may be incorporated into the waste disposal device in accordance with the invention for the purpose of severing the flexible tubing 34 when the container 12 is full of waste packages 74.
To prepare the waste disposal device 10 for use, the cover 14 is opened and a cartridge 24 is placed onto the flange 18. An end of the flexible tubing 34 is taken from the cartridge 24 to cause a length of the tubing 34 to be pulled through opening 36 and this end is then knotted. This knot of flexible tubing 34 is then placed over the lip 38 into the waste insertion chamber 40 to thereby form a first bag for storing a waste package 74. The cover 14 is then reattached to the container 12 and the device is ready for use.
In use, the lid 22 is opened to expose the waste insertion opening 20 of cover 14 and the aligned waste insertion chamber 40 of the container 12. A waste package 74 such as a soiled diaper is placed into the bag formed by flexible tubing 34 preferably so that the bag is held against the springs 72.
The lid 22 is then closed causing the rack gear 42 to rotate the gears 48, 54, 56, 58 and 60. Rotation of the gear 60, which is in meshed engagement with the projections 66 on the cartridge 24, will automatically cause rotation of the cartridge 24. Rotation of the cartridge 24 will cause the flexible tubing 34 not held stationary by the weight of the waste package 74 in engagement with the springs 72 to be twisted while the waste package 74 is held stationary. Thus, the flexible tubing 32 located above the waste package 74 twists and encloses and encapsulates the waste package 74.
Once a waste package 74 is sealed, the waste package 74 can be pushed downwardly past the retention springs 72 into the container 12 upon the following insertion of a waste package into the waste insertion chamber 40. Successive waste packages 74 can be sanitarily stored in the container 12 because each waste package 74 is individually sealed. Once the container 12 is filled, a cutting device can be used to sever the end of the most recently disposed waste package 74 from the roll of flexible tubing 34, and the series of waste packages 74 can be removed from the container 12 through the bottom access door 16.
Modifications to the above embodiment are contemplated, including but not limited to, variations in the rotation mechanism which converts the movement of the lid to rotation of the cartridge.
For example, another gear assembly for converting the downward movement of the lid 14 and associated rack gear 42 into rotational movement of the cartridge 24, while preventing rotational movement of the cartridge 24 during upward movement of the lid 14 is shown in
For this gear assembly 44′, a one-way transmission of rotational force is provided by the mounting of the shaft of the gear 48′ in aperture 52′. When the rack gear 42 is moved in the direction of arrow A, which occurs when the lid 22 is being closed, it frictionally engages gear 48′ and pushes gear 48′ downward until its shaft 48A′ is against the lower edge of the aperture 52′ at which time, the continued movement of the rack gear 42 causes the gear 48′ to rotate in the direction of arrow B causing gears 54′,60′ to rotate in the direction of arrow C, which is opposite to the direction of rotation of gear 48′. Rotation of the gear 60′ causes rotation of the cartridge 34 through the meshing engagement of the projections 64 on the cartridge with gear 60′.
On the other hand, when the rack gear 42 is moved upward upon movement of the lid 22 to its open position (in the direction of arrow A in
Instead of providing projections on the outer wall of the cartridge 24, sponge rollers can be used to transfer the rotational force provided by the gear assembly to the cartridge.
Although several embodiments of a waste disposal device incorporating cartridge rotation mechanisms in accordance with the invention are shown in
The embodiments in
A first embodiment of such a waste disposal device is shown in
A lid 22 is pivotally connected to the outer wall 84 so as to be movable between an open position in which a waste insertion opening 20 is exposed to enable insertion of a waste package such as soiled diaper into the container 82 and a closed position in which the lid 22 overlies and closes the waste insertion opening 20.
A flange 90 is located inside the container 82 along the inner surface of the container 82, and may be integrally formed with the container 82. Flange 90 can conform to the cross-sectional shape of the container 82.
A retention member 92 is seated on the flange 90 and includes tongues or springs 72 adapted to grasp a waste package 74 (
A removable cartridge 94 rests on the stepped section 92c and contains a circumferentially pleated length of flexible tubing 34. Additional details of the cartridge 94 are set forth below with reference to
A rotation mechanism 96 is provided to rotate the retention member 92. The rotation mechanism 96 includes a rack gear 42 attached to the lid 22 and having a series of teeth on at least a portion of an inner arcuate surface, and a gear assembly 98 arranged on the container 82. Gear assembly 98 includes a first gear 100 in meshing engagement with the rack gear 98 and a second gear 102 in meshing engagement with the first gear 100. Gear 102 is connected to a drive gear 104 which is in meshing engagement with the projections 92g on the rim 92f of the retention member 92 (
Thus, when the lid 22 is closed, the rack gear 42 is moved in the direction of arrow A in
In order to provide for relative rotation between the retention member 92 and the cartridge 94 and thus the formation of a twist in the tubing 34 above a waste package being retained by the springs 72 of the retention member 92, a mechanism for preventing rotation of the cartridge 94 is provided. Specifically, two pair of anti-rotation tabs 106 are arranged on the inner wall of the container 82 with the anti-rotation tabs 106 in each pair being spaced apart a distance substantially equal to the size of flanges 108 formed on the cartridge 94 (see
In use, the lid 22 is opened to expose the waste insertion opening 20. A waste package is placed into a bag formed by flexible tubing 34 preferably so that the bag is held against the springs 72.
The lid 22 is then closed causing the rack gear 42 to rotate the gears 100, 102 and 104. Rotation of the gear 104, which is in meshed engagement with the projections 92g on the rim 92f of the retention member 92, will cause rotation of the retention member 92. Rotation of the retention member while the cartridge 94 is held stationary will cause the flexible tubing 34 to be twisted above the waste package 74 and thereby encloses and encapsulates the waste package 74.
Once a waste package 74 is sealed, the waste package 74 can be pushed downwardly past the retention springs 72 into the container 82 upon the following insertion of a waste package into the waste insertion chamber 20. Successive waste packages 74 can be sanitarily stored in the container 82 because each waste package 74 is individually sealed.
Other constructions of retention members can be used in this embodiment. For example, the retention member 92 can be formed with a planar section from which springs 72 and the vertical walls 92b descend, and have a ring gear formed on an outer peripheral edge or on a lower surface. The ring gear would include teeth in meshing engagement with the drive gear 104 so that rotation of the drive gear 104 causes rotation of the ring gear and thus the retention member. The cartridge would rest on the planar section and be held against rotation by the anti-rotation tabs. As such, the stepped section, cylindrical wall section and rim are not present on the retention member.
The cartridge 94 shown in
Details of the cartridge 94 designed for use in the embodiment of
Cover 112 includes two tabs 108 on opposite sides. Tabs 108 are designed to fit between the anti-rotation tabs 106 formed in connection with the container 82 (see
The cartridge 94 can be designed for multiple uses, i.e., to enable insertion of a new pack of tubing 34 when the tubing 34 in the cartridge 94 is exhausted (instead of folding the cartridge 94 over on itself and pushing the cartridge 94 into the waste-receiving chamber 12a). In this case, the cover 112 is removably attached to the casing 110, using Velcro™ for example, and additional packs of tubing 34 provided. The additional packs of tubing 34 can be held together by appropriate means known in the art. When the tubing in the cartridge 94 is exhausted, the end of the tubing 34 is tied together and pushed into the waste-receiving chamber of the container 12. The cover 112 is separated from the casing 110 and a new pack of tubing 34 is inserted into the casing 110. The cover 112 is re-attached to the casing 110 and the cartridge 94 is prepared for use.
Casing 110 is typically made of a plastic material and cover 112 is typically made of a fibrous material such as cardboard. The use of these materials is not intended to limit the invention.
The cartridge 94 may also be designed to eliminate the need to tie the tubing 34, both at the beginning of use of the cartridge 94 and when the tubing 34 is used up and/or the hamper 88 is full. The rear end of the tubing 34 is usually fixed to the cartridge 94 to maintain the tubing 34 in connection with the cartridge 94.
With respect to eliminating the need to tie the tubing at the beginning of use of the cartridge 94, the cartridge 94 is constructed with the front end of tubing 34 closed, for example, by using a metal clip or clasp 124 as shown in
Other mechanisms for closing the front end of the tubing 34 during manufacture of the cartridge 94 can be used in the invention instead of the metal clasp 124. For example, the end of the tubing 34 could be closed by heat-sealing (as shown in
With respect to eliminating the need to tie the tubing when the length of available tubing is exhausted and/or the pail is full, the cartridge 94 is provided with a closure mechanism which is effective to close and seal the rear end of tubing 34 without requiring tying of the tubing 34. In the illustrated embodiment, the closure mechanism involves a particular construction of the cartridge 94 with weakened regions, both on the casing 110 and the cover 112, to allow for folding of a part of the cartridge 94 onto itself.
More specifically, the cover 112 is provided with score lines 126, which separate approximately equal parts 112a, 112b of the cover 112 and enable the cover 112 to be folded about the score lines 126, and with a mechanism to attach the folded parts 112a, 112b of the cover 112 together (
The mechanism on the cover 112 which will attach the parts 112a, 112b of the cover 112 together may be of the Velcro® type whereby part 112a includes a section of hook fasteners 132 and part 112b includes a section of loop fasteners 134 positioned to mate with the hook fastener section 132 when the cover 112 is folded about the score lines 126. The size and shape of the hook and loop fastener sections 132,134 can be varied and adjusted with a view toward obtaining a sufficiently secure bond between the parts 112a,112b of the cover 112 when the cover 112 is folded about the score lines 126.
An alternative mechanism would be to arrange a strip of adhesive on one part 112a with a covering pad so that removal of the covering pad would expose the adhesive which would then be folded to engage the opposite part 112b.
Another alternative mechanism is shown in
Once the cartridge 94,94′ is folded to close and seal the rear end of the tubing 34, it can be pushed into the hamper 88 through the retention member 92 and the lid 22 may then be raised to enable placement of a new cartridge 94 ,94′ into the container 82. The hamper 88 is emptied when full. The length of tubing 34 in the cartridge 94,94′ can be selected so that the hamper 88 is full when the tubing 34 is exhausted. In this case, emptying of the hamper 88 and replacement of the cartridge 94,94′ would occur simultaneously.
The cartridges 94,94′ described above can be used as a substitute for the cartridges in any diaper or waste pail using a continuous length of flexible tubing, including those of the Diaper Genie® type and those described herein.
The immediately foregoing embodiment provided for the rotation of the retention member upon closing of the lid via a movement conversion mechanism. In other embodiments, the retention member can be rotated by depressing a pushbutton or a foot pedal.
For example, in the embodiment shown in
A timer 150 is optionally coupled to the pushbutton 142 to enable a delay between the depression of the pushbutton 142 and the actuation of the motor 144.
When actuated, the motor 144 rotates a shaft 152 attached to the drive gear 146 so that the drive gear 146 is rotated. A power mechanism (not shown) is provided to supply power to the motor 144, for example, either a battery housing in an accessible compartment in the container 82 or a cord extending from the motor through the rear compartment 148 to the exterior of the container 82 for insertion into a power outlet.
The retention member 154 is seated on a flange 156 formed integral with the container 82. Retention member 154 has a planar section 154a from which springs 72 and vertical walls 154b descend, the vertical walls 154b defining an enclosure in which the springs 72 retain the waste package. A ring gear 158 is formed on a lower surface of the planar section 154a and includes teeth in meshing engagement with the drive gear 146. An alternative retention member can be formed with teeth on an outer peripheral edge, in the form of a ring gear surrounding the planar portion 154a. This ring gear would be supported on the flange 156 which would include an opening to enable the ring gear to engage with the drive gear 146.
An insert 160 is arranged above the retention member 154 to hold the retention member 154 in position and provide a support for the flanges 108 of the cartridge 94. Cartridge 94 also rests on the planar portion 154a of the retention member 154. The insert 160 includes anti-rotation tabs or ears 162 to prevent rotation of the cartridge 94 upon rotation of the retention member 154. The insert 160 may be snap fit to the inner wall of the container 82.
In use, a waste package is inserted until it is held by the springs 72 of the retention member 154, and then depression of the pushbutton 142 causes the motor 144 to rotate the shaft and drive gear 146 which in turn causes rotation of the ring gear 158 and thus the entire retention member 154. Rotation of the cartridge 94 is prevented by the anti-rotation tabs 162 so that it is held stationary. Rotation of the retention member 154 holding the waste package relative to the cartridge 94 causes the formation of a twist of the tubing 34 above the waste package and thus encapsulation of the waste package. An advantage of this embodiment is that the waste package can be encapsulated independent of the movement of the lid 22.
Another embodiment of a waste disposal device wherein the waste packages are rotated relative to the cartridge is shown in
Initially, instead of a hamper 88, a removable pail is used in this embodiment. The removable pail and the necessary structure to enable its use can be incorporated into any of the other embodiments described herein. Specifically, to enable use of the pail, an access door 164 is formed in the outer wall 84 and pivots about hinges 166 to enable selective access to a pail 168 resting on the base 86 in the interior of the container 82. The size of the pail 168 is such so as to enable its removal from and re-insertion into the container 82 through the access door 164. A closure mechanism is provided to secure the access door 164 in a closed position. The closure mechanism includes a U-shaped latch 170 arranged on the access door 164 and a projection 172 arranged on the outer surface of the outer wall 84 whereby the latch 170 is designed to overlie the projection 172 and thereby secure the access door 164 in its closed position. Other closure mechanisms can be used in the invention.
An annular flange 174 is located inside the container 82 along the inner surface of the outer wall 84. Flange 174 can conform to the cross-sectional shape of the outer wall 84, which may be cylindrical or otherwise. A removable cartridge 94 is supported by or rests on the flange 174 and contains a circumferentially pleated length of flexible tubing 34. The cartridge 94 is maintained in a stationary position relative to the flange 174, for example, by providing anti-rotation tabs on the container (not shown) to accommodate the flanges 108 of the cartridge 94.
Optionally, a funnel in the form of a flexible, resilient membrane 176 is connected to or constructed together with the flange 174 to support the tubing 34. Membrane 176 also prevents odors from escaping from the container 82. Such a membrane can also be incorporated into the other embodiments disclosed herein, either formed in connection with the cartridge on the structure on which the cartridge is seated.
In this embodiment, the rotation mechanism is integral with the retention mechanism. The rotation and retention mechanism 178 thus grasps waste packages and enables uni-directional rotation of the grasped waste packages relative to the cartridge 94 so as to form a twist in the tubing 34 above a waste package 74 which thereby causes encapsulation of the waste package 74. The cartridge 94 is maintained in a stationary position while the waste package is rotated.
The rotation and retention mechanism 178 comprises a vertically oriented frame 180 including walls defining a waste passage 182, resilient members or tongues 184 connected to the frame 180 and extending inward into the waste passage 182, an inner ring 186 connected to the frame 180, a first, movable outer ring 188 surrounding the inner ring 186, a second, stationary outer ring 190 connected to the outer wall 84 of the container 82 and a handle 192 connected to the first outer ring 188 (see
To provide for movement of the inner ring 186 and thus rotation of the frame 180 upon turning of the handle 192, the outer surface of the inner ring 186 includes grooves and a pin 196 is arranged in connection with the first outer ring 188 (
When the handle 192 is turned in the direction of arrow A, the first outer ring 142 and connected pin 196 rotate in the same direction causing rotation of the inner ring 186 and thus the frame 180 connected thereto. On the other hand, when the handle is turned in the direction of arrow B, the first outer ring 188 and connected pin 196 rotate in the same direction but the pin 196 slides over the angled surfaces of the grooves and does not frictionally engage therewith. In this case, the frame 180 is further prevented from rotating along with the first outer ring 188 by a pin 198 arranged in connection with the inner ring 186 and engaging with grooves on the second outer ring 190 (
One or more stops 200 are formed on the inner surface of the outer wall 84 of the container 82 above the rotation and retention mechanism 178 to prevent upward movement of the rotation and retention mechanism 178.
Other arrangements for providing rotation of the frame 180 upon turning of the handle 192 in only a single direction can also be used in the invention.
To prepare the waste disposal device for use, the lid 22 is opened and a cartridge 94 is placed onto the flange 174. In use, the lid 22 is opened to expose the waste insertion opening 20. A waste package 74 such as a soiled diaper is placed into the bag formed by flexible tubing 34 preferably so that the bag is held against the resilient tongues 184.
The handle 192, which is preferably maintained at one end of the slot 194, is grasped and moved in the slot 194 to cause the frame 180 to turn relative to the cartridge 94, which is held stationary, so that a twist forms above the waste package 74 and encapsulates the waste package 74 (see
Successive waste packages 74 are inserted into the waste insertion opening 20, and so long as that waste package or a preceding waste package is grasped by the resilient members 184, movement of the handle 192 will cause formation of a twist above that waste package. This procedure continues until the length of available tubing 34 is exhausted or the pail 168 is full. At this time, the lid 22 is opened and the cartridge 94 is closed by folding the cartridge 94 onto itself and connecting the hook and loop fastener sections 132,134. The cartridge 94 may be pushed through the flange 174 and the frame 180 into the pail 168.
Among the advantages provided by the waste disposal device are the use of a cartridge which does not require tying of either the front or rear end of the tubing and the presence of a pail, or other comparable removable receptacle, into which the encapsulated waste packages fall so as to provide for easy removal of the series of encapsulated waste packages.
The rotation mechanism described above can also be used as a substitute for the rotation mechanism in diaper and waste pails in which flexible tubing is twisted, including those of the Diaper Genie® type.
Another embodiment of a waste disposal device wherein the waste packages are rotated relative to the cartridge is shown in
The encapsulation device 202 grasps waste packages and enables uni-directional rotation of the grasped waste packages relative to the cartridge 94 so as to form a twist in the tubing 34 above a waste package which thereby causes encapsulation of the waste package. The encapsulation device 202 generally comprises a retention unit 206 which engages and temporarily holds a waste package and a rotation mechanism 208 for rotating the retention unit 206.
Retention unit 206 comprises a vertically oriented frame 210 and an annular gear ring 212. The frame 210 includes walls defining a passage through which the waste article surrounded by a section of the tubing 34 passes, resilient members or tongues 72 extending inward into the waste passage, and a support flange 214 on which the cartridge 94 rests (
Annular gear ring 212 may be a separate component from the frame 210 and if so, a cooperating attachment mechanism is provided to attach the frame 210 to the gear ring 212. The cooperating attachment mechanism comprises a plurality of projections 216 formed on the upper surface of the gear ring 212 and notches 210A formed on the outer surface of the frame 210. As such, rotation of the gear ring 212 will cause rotation of the frame 210. In the alternative, the frame 210 and gear ring 212 could be formed as an integral component.
Optionally, a funnel in the form of a flexible, resilient membrane (not shown) may be connected to or constructed together with the support flange 214 to support the tubing 34. The membrane would also prevent odors from escaping from the container.
The gear ring 212 includes an annular slot between an upper circular rim 220 and a lower circular gear rim 222 whereby a flange 242 formed on the container is inserted into the slot 218 to retain the gear ring 212 in connection with the container 82 while permitting rotation of the gear ring 212 relative to the container 82. Gear rim 222 includes a series of teeth. As shown in
The rotation mechanism 208 can take a variety of different forms. The objective of the rotation mechanism 208 is to rotate the gear rim 222 of the gear ring 212 either upon direct manual activity (such as by depressing a foot pedal (
One embodiment of a rotation mechanism which is based on direct manual activity is shown in
The motor 224, shaft 226 and gear 228 are arranged in the rear compartment 146 of the container 82. A slot 230 is formed at an upper end of a peripheral wall 146a defining the compartment 146 to enable the gear rim 222 to enter into the compartment 146 and engage the gear 228. In the alternative, it is possible to construct the wall 146a so that the gear 228 extends through the slot 230 and engagement between the gear rim 222 and gear 228 occurs outside of the compartment 146.
A motor actuation mechanism is arranged on the container to actuate the motor 224. One embodiment of a motor actuation mechanism is shown in
Another embodiment of a motor actuation mechanism, which is designed to operate based on opening and/or closing of the lid 22, is shown in
An optional timer could be coupled to the switch 234 or motor 224 to delay the actuation of the motor 224 for a set period of time after depression of the plunger 236 or closure of the lid 22. In this case, the switch or sensor 234 would detect when the lid 22 is closed and send a signal to the timer. The timer then sends a signal to the motor 224 after the set period of time to actuate the motor 224. An appropriate sensor can be provided to detect whether a waste package has been inserted into the waste passage defined by the retention unit 206 so as to prevent unnecessary rotation of the retention unit 206 and waste of the tubing 34.
In this embodiment, it is advantageous that actuation of the motor 224 and the consequent rotation of the retention unit 206 and encapsulation of a waste package being grasped by the retention unit 206 is automatic upon closure of the lid 22 and does not require any additional manual activity, thereby eliminating the problem of the user forgetting to actuate the motor 224 and causing the release of odors from an unencapsulated waste package.
The location of the switch 234 and plunger 236 are not limiting and they may be arranged at other locations. Further, a manually-actuatable switch can be provided along the outer wall of the container and electrically coupled to the motor so that depression of the switch causes actuation of the motor. As such, actuation of the motor can occur without dependency on the closure of the cover. This might be useful when the encapsulation of a waste package is not entirely effective and an additional twisting of the tubing is desired.
Another embodiment of a rotation mechanism includes a manually actuated lever which is coupled to the retention unit 206 and enables rotation of the retention unit 206 upon movement of the lever, in either a uni-directional movement or in both a back and forth movement. It is also possible to provide a crank coupled to the retention unit 206 in such a manner that when the crank is pushed downward and released, the retention unit rotates. The retention unit 206 may be arranged to rotate upon either the downward movement of the crank, the return upward movement or both. Such a crank is known, for example, in the toy art.
As described above, the cartridge 94 is a unique cartridge. However, it is envisioned that the waste disposal device shown in
Since the cartridges would be supported on the support flange 214, they could rotate along with the support flange 214. It is preferable though to provide a mechanism for fixing the cartridge in a stationary position relative to the retention unit 206 to provide for a better twisting of the tubing 34 upon rotation of the retention unit 206.
To this end, as shown in
Another form of an adapter to enable use of the rotation mechanism 208 with conventional cartridges would be to form the adapter as an annular ring with a size to provide a snug fit for the conventional cartridge.
The compacting mechanism 204 comprises a shaft 246 rotated by the motor 224 and connected to or formed integral with a tube 248 positioned in the waste package-receiving portion of the container 82. The optimum location of the tube 248 relative to the base 86 of the container 82 and retention unit 206 may be determined by experimenting with the particular waste product to be encapsulated but would usually be about halfway between the base 86 and the retention unit 206.
Access door 240 includes a projection 252 which frictionally engages an inner surface of the tube 248 when the door is closed so that the tube 248 is supported at both ends.
The tubing 34 is removably connected to the tube 248 so that rotation of the tube 248 causes the tubing 34 to be pulled downward and wound around the tube 248. Connection of the tubing 34 to the tube 248 can be accomplished in a variety of ways, for example, by forming the tubing 34 with an enlarged heat-sealed end 34A (having a shape smaller than the size of a slot 256 formed in the tube 248) and inserting the end into the interior of the tube 248 when the access door is open or by arranging a clip at the end of the tubing 34 and inserting the clip into the interior of the tube 248 when the access door is open. The tubing 34 can also be tied to the tube 248. Since the tubing 34 is entrained in connection with the tube 248, the encapsulated waste packages are compacted into a roll as the tube 248 is rotated upon each subsequent insertion of a waste package into the device (see
The tube 248 includes, in addition to the slot 256, ridges 258 which may be diametrically opposed or evenly spaced around the circumference of the tube 248. This enables the construction and use of disposable sleeves 262 having ridges 264 defining inner grooves in which the ridges 258 of the tube 248 are received (see
In this embodiment, when the motor 224 is actuated, two different operations are performed. First, the shaft 226 from the motor 224 is rotated in the direction of arrow A to cause the retention unit 206 to rotate in the direction of arrow B (via the engagement of gear 228 with the gear rim 222) while the retention unit 206 is grasping a waste package relative to the cartridge 94 to form a twist above the waste package (see
When the container is full, the access door 240 can be opened, the tubing 34 cut at a point above the uppermost encapsulated waste package, the tubing tied and then the roll of compacted waste packages slid off of the tube 248.
Instead of having a shaft 226 extending directly from the motor 224, it is possible to provide a gear transmission assembly between the motor 224 and the gear rim 222 as shown in
These embodiments would be particularly advantageous for medical waste requiring special disposal, e.g., infectious or bodily waste from doctor's offices, which is generally not compacted even though it is very suitable for compacting. The cost of disposing of medical waste from doctor's offices is typically based on the number of pick-ups regardless of the amount of material, and if the medical waste could be compacted, it would result in fewer, less frequent pick-ups.
It is envisioned that an attachment for a pail can also be fabricated from the components above. That is, the lid 22 and encapsulation device 202, i.e., the retention unit 206 and rotation mechanism 208, and the compacting mechanism 204 can be fabricated as a unit for enabling attachment to a particular size or sizes of pails (with an adapter, as needed). Once attached to the pail, upon insertion of a cartridge, a waste disposal device is obtained. In this case, an internal power source (i.e., the motor) for the rotation mechanism 208 would be used.
To prepare the waste disposal device shown in
Successive waste packages 74 are inserted into the waste insertion opening, and so long as that waste package or a preceding waste package is grasped by the resilient springs 72, rotation of the retention unit 204 will cause formation of a twist above that waste package. This procedure continues until the length of available tubing 34 is exhausted or the container 82 is full.
A region proximate and optionally including the end of the tubing 34 may be colored differently than a remainder of the tubing 34 to provide an indication when the end of the tubing 34 is approaching.
The tubing 34 can be provided with lines of depressions 34a (see
In order to prevent release of odors from encapsulated waste packages, the depressions 34a extend only partially through the thickness of the tubing 34. In this manner, even if a waste package was placed along a line of depressions, odors from the waste package would not be released through the depressions 34a.
In the event that the tubing is exhausted, the lid 22 is opened and the cartridge 94 is closed by folding the cartridge 94 onto itself and connecting the cover attachment mechanism, e.g., the hook and loop fastener sections 132,134. The cartridge 94 may be pushed through the support flange 214 and the frame 210 into the container 82.
Although the embodiment in
For example, the cartridge 94 and gear ring 212 assembly shown in
Another embodiment of an encapsulation device is shown in
The retention unit 206′ is rotatably mounted to the container, for example, by providing an annular slot which receives a flange formed on the inner wall of the container.
Another embodiment of a waste disposal device wherein the waste packages are rotated relative to the cartridge is shown in
A rotation mechanism 286 is provided for enabling rotation of the retention member 274 upon depressing a pedal 288 while preventing rotation of the retention member 274 when the pedal 288 returns to its original upper position. The pedal 288 is movable in a slot 290 formed in the wall of the container 82. The rotation mechanism 286 comprises a pulley 292 arranged inside the container 82 and which is rotatably attached to the pedal 288. A cable 294 runs over this pulley 292 and has a first end anchored to an anchor member 296 attached to a flange 298 of the container. The second end of this cable 294 is attached to a rotatable shaft 300 and a portion of the cable 294 is wound around the shaft 300. A gear 302 is mounted on the shaft 300 and is in meshed engagement with a gear portion 304 of a clutch member 306 mounted about a drive spindle 308 attached to the flange 298. A drive gear 310 is fixedly mounted on this drive spindle 308 and is in meshed engagement with an idler gear 312 which in turn is in meshed engagement with the gear rim 222.
The rotation mechanism 286 further comprises a spring clutch 314 arranged in the clutch member 306 to grab the drive spindle 308 during counterclockwise rotation of the clutch member 306, so that the clutch member 306 rotates along with the drive spindle 308 and the drive gear 310, and releases the drive spindle 308 during clockwise rotation, so that the clutch member 306 does not engage with the drive spindle 308 and does not rotate the drive spindle nor the drive gear 310. The spring clutch 314 is attached by a pin 316 to the clutch member 306.
To cause rotation of the clutch member 306 in the clockwise direction, i.e., to cause the cable 294 to wind around the shaft 300 and thus the pedal 288 to be moved upward, a return spring 318 is connected at one end to a shaft 320 mounted on the flange 298 and at an opposite end to the clutch member 306.
In operation, when the pedal 288 is moved downward, the cable 294 unwinds from the shaft 300 causing rotation of the gear 302 and the clutch member 306, since the spring clutch 314 grabs the drive spindle 308. Rotation of the clutch member 306 causes rotation of the drive gear 310 which in turn causes rotation of the idler gear 312 and finally rotation of the gear rim 222 so that the retention unit 206 connected to the gear rim 222 rotates. The rotation of the clutch member 306 is against the bias of the return spring 318. As such, when the pressure exerted on the pedal 288 is removed, the return spring 318 causes rotation of the clutch member 306 in an opposite direction, clockwise in the illustrated embodiment, so that the gear 302 rotates counterclockwise causing the cable 294 to be wound about the shaft 300 and the pedal 288 to be raised. The drive gear 310 is not rotated during the rotation of the clutch member 306 in view of the disengagement of the spring clutch 314 from the drive spindle 308, with the result that the retention unit 206 is not rotated.
Another embodiment of a waste disposal device wherein the waste packages are rotated relative to the cartridge is shown in
The container 82 houses a turntable 324 rotatable about a shaft 326 attached to the base of the container and a rotation mechanism 328 for rotating the turntable 324. The turntable 324 is arranged below the pail 320 and includes a spool section 330 on which a string is wound, a cylindrical shaft section 332 extending upward from the spool section 330 and an annular plate 334 surrounding the shaft section 332. The spool section 330 and shaft section 332 surround the shaft 326 attached to the container 82 to enable rotation of the turntable 324 relative to the container 82.
A biasing mechanism, such as a plurality of springs 336, is arranged between the plate 334 and the spool section 330 to bias the plate 334 upward. The springs 336 are arranged around annular seats 338 formed on the lower surface of the plate 334 which accommodate projections 340 arranged on the spool section 330. Another spring 342 is arranged around the shaft 326 between the spool section 330 and the plate 334. A lip 344 is arranged at the top of the shaft section 332 to limit the upward movement of the plate 334.
One end of a string 346 is connected to the spool section 330 of the turntable 324 and the spring 346 is wound around the turntable 324 with the opposite end of the string 346 being connected to a pull ring 348 situated outside of the container. Pull ring 348 rests on a flange 350 formed integral with the container 82. A pulley 352 is also attached to the container 82 to guide the string 346 into the container 82 to the spool section 330 of the turntable 324. As such, pulling of the pull ring 348 will cause rotation of the turntable 324 in one direction. The turntable 324 is returned to its original position by a torsion spring 354 connected to the turntable 324.
A mechanism is provided to enable uni-directional rotation of the pail 320 upon rotation of the turntable 324, i.e., so that the pail 320 is rotated by the turntable 324 upon rotation of the turntable 324 in one direction and not the opposite direction. To this end, the turntable 324 is provided with a plurality of ramped ribs 356 on an upper surface while the bottom surface of the pail 320 is provided with corresponding ramped depressions 358. The pail 320 can be positioned onto the turntable 324 so that the ramped ribs 356 are present in the ramped depressions 358 (
In this embodiment, ribs 362 project from the inner surface of the wall of the container 82 to prevent upward movement of the pail 320 and centering ribs 364 project from the inner surface of the wall of the container 82 to center the pail 320 in a position in which the ramped depressions 358 can be engaged by the ramped ribs 356 of the turntable 324. Also, the cartridge 94 is seated on a flange 366 formed integral with the container 82 and held against rotation by anti-rotation tabs 106 or the like as described above
In use, the lid 22 is opened and the first waste package is pushed into the pail 320 and positioned between the retention member 322 and the sides of the pail 320 so that it is held in that position. The lid is closed and the pull ring 348 is pulled causing the turntable 324 to rotate with the effect that since the ramped ribs 356 are pressed into the ramped depressions 358 on the pail 320, the pail 320 is rotated. Since the cartridge 94 is held stationary by the anti-rotation tabs, a twist is formed in the tubing 34 above the waste package. When the pull ring 348 is released, the turntable 324 rotates in the opposite direction but since the ramped ribs 356 disengage from the ramped depressions 358, in view of the direction of the incline of the ramped ribs 356 and ramped depressions 358, the pail 320 does not rotate along with the turntable 324. Upon the insertion of a subsequent waste package into the pail 320, the pull ring 348 is again pulled and since the first waste package is held, both waste packages are rotated upon rotation of the pail 320 causing the formation of a twist above the subsequent waste package. This process continues until the pail 320 is full at which time, the tubing is cut, the pail 320 is removed, emptied and then reinserted into the container 82. The end of the tubing 34 is tied and the process continues.
Referring now to
Embodiments of this type can also be considered canisterless systems since the pack of tubing may be sold without a canister which is inserted into the container.
Generally, any of the embodiments described above wherein the cartridge is fixed while the retention mechanism rotates relative thereto, e.g., the embodiments shown in
Referring now to
A lid 410 is pivotally connected to the outer wall 404 so as to be movable between an open position in which a waste insertion opening 412 is exposed to enable insertion of a waste package, such as a soiled diaper, into the container 402 and a closed position in which the lid 410 overlies and closes the waste insertion opening 412.
To provide an enclosure for receiving a pack of flexible tubing for use in the waste disposal device 400, a casing insert 416 is supported on support flanges 414 and includes an annular cavity 418 defined by a substantially cylindrical inner wall 420, an annular lower wall 422 and a substantially circular outer wall 424. The insert 416 also includes an annular flange 426 extending outward from an upper edge of the outer wall 424 and which rests on the support flanges 414. A replaceable pack of flexible tubing 428 is insertable into the cavity 418 through an open top of the insert 416 leading to the cavity 418. The support flanges 414 are located inside the container 402 along the inner surface of the outer wall 404 and may be integrally formed therewith. Support flanges 414 are spaced around the inner circumference of the outer wall 404.
To close an open top of the insert 416, a lid 430 is pivotally connected to the container 402, e.g., to the outer wall 404 thereof by one or more hinge members 496 and mounting brackets 498, and is movable between an open position in which the cavity 418 is accessible and a closed position in which the cavity 418 is substantially covered. When the lid 430 is in the open position, it is possible to insert a new pack of tubing 428 into the cavity 418. The lid 430 is designed so that when in the closed position, an annular passage is formed between the inner wall 420 and the lid 430 through which the tubing 428 is dispensed (see
The combination of the insert 416 and lid 430 thus provides the same function as the cartridges used in prior art waste disposal devices of a similar type, i.e., to enable the dispensing of a pack of flexible tubing from a cavity defined by the cartridge through an annular passage.
To ensure that the lid 430 does not open inadvertently during dispensing of the tubing 428 through the annular passage, a locking mechanism is provided to lock the lid 430 in the closed position. As shown in
To facilitate rotation of the locking member 434, the locking member 434 includes a pair of projections 438 extending upward from the planar portion 440 arranged against the lid 430. When locking or unlocking the lid 430, the user manually grasps the projection 438 and turns the locking member 434. The lid 430 can then be pulled upward once the aperture 436 aligns with the tab 432.
A retention member 442 is movably seated on a support flange 488 and includes tongues or springs 444 adapted to grasp a waste package. Retention member 442 has a frame including an outer, vertically oriented wall 446, a stepped section 448 arranged at the lower edge of the outer wall 446, inner vertically oriented walls 450, 452 and horizontally oriented walls 454 each connecting the stepped section 448 to a respective one of the inner walls 450. Vertical walls 450, 452 define a waste insertion chamber. The springs 444 descend from the vertical walls 452. Vertical walls 450 are interleaved with vertical walls 452 so that the springs 444 are arranged on alternating walls. The stepped section 448 forms an indentation 456 enabling the retention member 442 to be movably seated on the support flange 488 which extends around the inner periphery of the outer wall 404 of the container 402. Support flange 488 may be formed integral with the support flanges 414 which support the insert 416.
The retention member 442 also includes a circular gear rim 458 adjoining the outer wall 446 and on which projections 460 are formed.
In the design of the waste disposal device 400, instead of or in addition to supporting the insert 416 on the support flanges 414, the insert 416 can be supported on the horizontal walls 454 of the retention member 442.
A rotation mechanism 462 is provided to rotate the retention member 442, and thus a waste package when held thereby. As shown in
As shown in
In operation, when the lid 410 is closed, the rack gear 464 is moved in the direction of arrow A in
In order to provide for relative rotation between the retention member 442 and the insert 416 and thus the formation of a twist in the tubing 428 above a waste package being retained by the springs 444 of the retention member 442, a mechanism for preventing rotation of the insert 416 is provided (for those embodiments wherein the insert 416 is not permanently fixed to he container 402). Specifically, an anti-rotation tab 480 is arranged on the inner surface of the outer wall 404 of the container 402 and is dimensioned to fit with minimal clearance in a slit 482 formed in the flange 426 of the insert 416 (see
Proper placement of the insert 416 in the container 402 is enabled by the alignment of the slit 482 with the tab 480 and is necessary because the flange 426 of the insert 416 includes a notch 484 which aligns with the rack gear 464 so that the movement of the rack gear 464 is not encumbered by the insert 416. The lid 430 also includes a similar notch 486.
In use, the lid 410 is opened to expose the waste insertion opening 412. A waste package is placed into a bag formed by flexible tubing 428 preferably so that the bag is held against the springs 444. The lid 410 is then closed causing the rack gear 464 to rotate the gears 468, 470, 472, 474 and 476. Rotation of the gear 476, which is in meshed engagement with the projections 460 on the rim 458 of the retention member 442, will cause rotation of the retention member 442. Rotation of the retention member 442 while the insert 416 is held stationary will cause the flexible tubing 428 to be twisted above the waste package and thereby enclose and encapsulate the waste package received by the tubing 428. Once a waste package is sealed, the waste package can be pushed downwardly past the retention springs 444 into an interior waste storage compartment in the container 402 upon the following insertion of a waste package into the waste insertion chamber. Successive waste packages can be sanitarily stored in the container 402 because each waste package is individually sealed.
When the tubing 428 is exhausted, the lid 410 is opened, the locking member 434 is rotated to align an aperture 436 with the tab 432 and the lid 430 is lifted upward to expose the now-empty cavity 418. A refill pack of tubing is then placed into the cavity 418, including a closed front end as shown in
To ensure that the refill pack of tubing maintains a compact form to enable its placement into the cavity 418, adhesive is applied to the edge of the tubing. As shown in
Other constructions of retention members can be used in this embodiment. For example, the retention member 442 can be formed with a planar section from which springs 444 and the vertical walls 450, 452 descend, and have a ring gear formed on an outer peripheral edge or on a lower surface. The ring gear would include teeth in meshing engagement with the drive gear 476 so that rotation of the drive gear 476 causes rotation of the ring gear and thus the retention member. The insert could rest on the planar section.
Another construction of a retention member is shown in FIG. 52 wherein the retention member 500 includes a vertically oriented outer wall 502, a horizontal lower wall 504 arranged at a lower edge of the outer wall 502, vertical walls 506, 508 defining a waste insertion chamber and springs 510 descending from vertical walls 506. Vertical walls 506 are interleaved with vertical walls 508 so that the springs 510 are arranged on alternating walls. Retention member 500 also includes a flange 512 arranged at an upper edge of the outer wall 502 and which rests on one or more support flanges connected to or formed integral with the outer wall of the container to thereby movably support the retention member 500 in the container. Alternatively, the retention member 500 can include a stepped section between the outer wall 502 and the lower wall 504 and be supported by a flange as in the embodiment described with reference to
Instead of a circular rim 458 with projections 460 as in the embodiment shown in
The operation of a waste disposal device with the retention member 500 is substantially the same as that described for a waste disposal device with retention member 442.
For the embodiments shown in
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and, therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
This application is a continuation-in-part of application Ser. No. 10/693,087 filed Oct. 23, 2003 which is a continuation of application Ser. No. 10/456,428 filed Jun. 6, 2003 now U.S. Pat. No. 6,804,930, which is a continuation of application Ser. No. 10/138,058 filed May 2, 2002, now U.S. Pat. No. 6,612,099 issued Sep. 2, 2003, which claims priority under 35 U.S.C. §119(e) of U.S. provisional application Ser. No. 60/288,186 filed May 2, 2001, U.S. provisional patent application Ser. No. 60/337,355 filed Nov. 8, 2001 and U.S. provisional patent application Ser. No. 60/359,148 filed Feb. 20, 2002, the contents of all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3536192 | Couper | Oct 1970 | A |
3619822 | Carmichael | Nov 1971 | A |
3779157 | Ross, Jr. et al. | Dec 1973 | A |
3908336 | Forslund | Sep 1975 | A |
3959947 | Sonnino | Jun 1976 | A |
4162602 | Achelpohl et al. | Jul 1979 | A |
4427110 | Shaw, Jr. | Jan 1984 | A |
4561563 | Woods | Dec 1985 | A |
4760784 | Whiteside | Aug 1988 | A |
4869049 | Richards et al. | Sep 1989 | A |
4934529 | Richards et al. | Jun 1990 | A |
5022553 | Pontius | Jun 1991 | A |
5120454 | Wieties | Jun 1992 | A |
5125526 | Sumanis | Jun 1992 | A |
5147055 | Samson et al. | Sep 1992 | A |
5183157 | Darden | Feb 1993 | A |
5184575 | Reinartz | Feb 1993 | A |
5294017 | Li | Mar 1994 | A |
5385259 | Bernstein et al. | Jan 1995 | A |
5520303 | Bernstein et al. | May 1996 | A |
5535913 | Asbach et al. | Jul 1996 | A |
5590512 | Richards et al. | Jan 1997 | A |
5642810 | Warner et al. | Jul 1997 | A |
5651231 | Garland | Jul 1997 | A |
5655680 | Asbach et al. | Aug 1997 | A |
5671847 | Pedersen et al. | Sep 1997 | A |
5765339 | Garland | Jun 1998 | A |
5813200 | Jacoby et al. | Sep 1998 | A |
5884556 | Klepacki et al. | Mar 1999 | A |
6000323 | Schlegel | Dec 1999 | A |
6065272 | Lecomte | May 2000 | A |
6120743 | Papari | Sep 2000 | A |
6128890 | Firth | Oct 2000 | A |
6141945 | Becher | Nov 2000 | A |
6170240 | Jacoby et al. | Jan 2001 | B1 |
6202877 | La Torre et al. | Mar 2001 | B1 |
6354062 | Haughton et al. | Mar 2002 | B1 |
6370847 | Jensen et al. | Apr 2002 | B1 |
6453640 | Hayashi | Sep 2002 | B1 |
6516588 | Jensen et al. | Feb 2003 | B1 |
6719194 | Richards | Apr 2004 | B1 |
6722107 | Morand | Apr 2004 | B1 |
6817164 | Mauffette et al. | Nov 2004 | B1 |
6901974 | Chomik et al. | Jun 2005 | B1 |
6925781 | Knuth et al. | Aug 2005 | B1 |
20010037627 | Hausslein | Nov 2001 | A1 |
20030208995 | Stravitz | Nov 2003 | A1 |
20040020175 | Stravitz | Feb 2004 | A1 |
20050183400 | Stravitz et al. | Aug 2005 | A1 |
20050183401 | Stravitz et al. | Aug 2005 | A1 |
20050188661 | Stravitz et al. | Sep 2005 | A1 |
20050193691 | Stravitz et al. | Sep 2005 | A1 |
20050193692 | Stravitz et al. | Sep 2005 | A1 |
20050217214 | Richardson et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
2019173 | Dec 1990 | CA |
1318234 | May 1993 | CA |
0005660 | Nov 1979 | EP |
2000-247401 | Sep 2000 | JP |
WO 02083525 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050028491 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60359148 | Feb 2002 | US | |
60337355 | Nov 2001 | US | |
60288186 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10456428 | Jun 2003 | US |
Child | 10693087 | US | |
Parent | 10138058 | May 2002 | US |
Child | 10456428 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10693087 | Oct 2003 | US |
Child | 10935259 | US |