This application claims priority to German Patent Application No. 102015001763.2, filed Feb. 11, 2015, which is incorporated herein by reference in its entirety.
The present disclosure pertains to a waste gate valve actuator, in particular an exhaust gas turbocharger of a motor vehicle, an exhaust gas turbocharger with such a waste gate valve actuator, and a motor vehicle with such a waste gate valve actuator.
Known from DE 10 2012 217 920 A1 is a waste gate valve with a waste gate valve actuator exhibiting a flap. The flap exhibits a base surface and an elevation resembling a truncated cone.
The object of implementing the present invention is to provide an improved exhaust gas turbocharger, in particular for a motor vehicle.
This object is achieved with a waste gate valve actuator with the features in claim 1. Claims 10 and 14 protect an exhaust gas turbocharger with a waste gate valve actuator described herein, or a motor vehicle with an exhaust gas turbocharger described herein. Advantageous embodiments of the invention are the subject of the subclaims.
In accordance with an aspect of a herein described embodiment, a waste gate valve actuator for an exhaust gas turbocharger that may find application in a motor vehicle may have a flap with a base surface, which may be provided or set up to be tightly supported on an edge of an opening of a waste gate channel and/or a channel-side elevation. The waste gate channel or channel-side elevation in at least one cross section along an axial direction may have an outer contour with a first (axial j section and an adjoining (axial) section facing away from the base surface. The outer contour in the first section may have one or more outer tangents spaced apart from each other in an axial direction, which may include the same first angle deviating from zero with the axial direction, and in the second section have two or more outer tangents spaced apart in the axial direction. Which may include the same second angle deviating from zero and the first angle with the axial direction.
In an additional or alternative embodiment, a waste gate valve actuator for an exhaust gas turbocharger that may be used in a motor vehicle, may have a flap with a base surface, which may provided or set up to be tightly supported on an edge of an opening of a waste gate channel and/or a channel-side elevation. The channel in at least one cross section along an axial direction may have an outer contour with a first (axial) section and an adjoining (axial) section facing away from the base surface. The elevation may be a flat front surface facing away from the base surface that in relation to the base surface-side floor surface of the elevation passes over into the base surface or adjoins that latter, is offset toward a rotational axis of the flap perpendicular to the axial direction, around which the flap can be pivoted between a closed position, in which its base surface is supported on an edge of the opening, and at least one closed position, in which the base surface is spaced apart from the edge.
In one embodiment specifically contouring the elevation may make it possible to advantageously prescribe a free-flowing surface of the opening and/or flow volume through the opening, in particular at least regionally concave over the travel of the flap between a closed and (maximally) opened position.
In another embodiment at least two outer contour sections, which exhibit outer tangents at least in part differently inclined against the axial direction, wherein at least one contour section facing away or located remotely from the base surface may have at least two parallel outer tangents spaced apart from each other in the axial direction.
In addition, in a herein described embodiment an advantageous characteristic, in particular one that is at least essentially linear at least sectionally, can be created by an elevation with a front surface that faces away from the base surface, and is offset toward a rotational axis of the flap in relation to a floor surface of the elevation.
An embodiment of the exhaust gas turbocharger may have at least one turbine with at least one turbine wheel, which is arranged in an exhaust gas passage of an internal combustion engine or provided or set up for this purpose, and at least one compressor with at least one compressor wheel, which is coupled with the turbine wheel, in particular rigidly connected thereto, and arranged in an air supply passage of the internal combustion engine or provided or set up for this purpose. In an embodiment, the waste gate channel is fluidically connected in parallel with the turbine wheel, and connected with the exhaust gas passage on either side of the turbine via the opening and an additional opening lying opposite thereto, wherein the one opening can be optionally closed or enlarged, in particular continuously, or reduced, in particular down to zero, by adjusting the flap of the waste gate valve actuator. In an embodiment, the opening that can be closed or covered by the flap is an inlet opening of the waste gate channel upstream from the turbine, while in another embodiment it is an outlet opening of the waste gate channel downstream from the turbine.
In an embodiment, the axial direction may be a rotationally symmetrical axis of the elevation and/or base surface and/or floor surface. Accordingly, the elevation may be rotationally symmetrical relative to the axial direction. This makes it possible to improve the production and/or (flow) characteristics of the flap. Additionally or alternatively, the axial direction may include an angle with a perpendicular on the base surface and/or floor surface and/or (with the flap closed) with a perpendicular on the opening of the waste gate channel that measures at most 30°, in particular at most 5°, in particular at most 1°. Additionally or alternatively, the axial direction can include an angle with the rotational axis of the flap that measures at least 75°, in particular at least 80°, in particular about 90°.
In an embodiment that is not rotationally symmetrical relative to the axial direction, the elevation, in particular a center or centroid line of the elevation, is inclined against the axial direction, either sectionally or over its entire extension.
In an embodiment, the first section may extend over at least 20%, in particular at least 25%, in particular at least 30%, of an overall height of the elevation in an axial direction. Additionally or alternatively, it can adjoin the base surface or, in particular in a radius, pass over into the latter. This makes it possible to improve the production and/or (flow) characteristics of the flap.
In an embodiment, the second section may extend over at least 20%, in particular at least 25%, in particular at least 30%, of an overall height of the elevation in an axial direction. Additionally or alternatively, it can adjoin in particular a flat front surface of the elevation facing away from the base surface, or, in particular in a radius, pass over into the latter. A flat front surface of the elevation may be perpendicular to the axial direction and/or exhibit a front surface whose maximum and/or minimum dimensions measure at most 75% and/or at least 15% of the maximum and/or minimum dimensions of the base surface. This makes it possible to improve the production and/or (flow) characteristics of the flap.
In an embodiment, the outer contour in the first section and/or in the second section may be completely or partially straight. In a further development, the elevation correspondingly may have a first section with a truncated contour that is closer to the base surface, in particular adjoining the base surface, and a second section with a conical or truncated contour, in particular adjoining the first section and/or front surface of the elevation, wherein the second section exhibits a larger cone angle in a further development. This makes it possible to improve the production and/or (flow) characteristics of the flap. The outer contour in the first section and/or in the second section may be completely or partially curved. In a further development, the elevation may be a freeform contour with the first and second section, which may have outer tangents at least in part differently inclined against the axial direction, wherein, in a further development, at least one contour section facing away or located remotely from the base surface exhibits at least two parallel outer tangents spaced apart from each other in the axial direction. This makes it possible to improve the (flow) characteristics of the flap.
In an embodiment, the outer contour of the elevation between the base surface and floor surface and its front surface may be free of kinks with angles measuring more than 45°, in particular more than 30°, in particular more than 5°, and in a further development is free of kinks between the base surface and front surface. Furthermore, the outer contour may form an angle with the base surface and/or front surface exceeding 45°, and may have a kink whose angle measures more than 45°. This makes it possible to improve the production and/or (flow) characteristics of the flap.
In an embodiment, the base surface is flat. In another embodiment, an outer edge of the base surface is offset toward the elevation or away from the elevation in an axial direction relative to a transition in the elevation or relative to the floor surface. This makes it possible to improve the sealing characteristics of the flap and/or its installation space.
In an embodiment, the base surface and elevation are designed as a single piece with each other. This makes it possible to improve the production and/or stability of the flap.
In an embodiment, the flap is movably joined with a carrier. This makes it possible to advantageously improve a seal and/or offset tolerances. In another embodiment, the flap is rigidly joined with a carrier or designed as a single piece with the latter. This makes it possible to improve the stability of the flap.
In an embodiment, a turbocharger housing of the exhaust gas turbocharger may have the (inlet or outlet) opening of the waste gate channel and the waste gate valve actuator described herein, whose flap can be adjusted, for example pivoted and/or axially moved, between a closed position, in which its base surface is supported on an edge of the opening, and one or more open positions, in which the base surface is spaced in particular increasingly apart from the edge, in particular mounted so that it can be adjusted, for example pivoted and/or axially moved, via the carrier, in particular on the turbocharger housing.
In an embodiment, the opening and flap are designed in such a way that a free-flowing surface of the opening and/or flow volume through the opening increases to less of an extent over a travel of the flap between the closed and a maximally open position in a first travel range than in a second travel range subsequent thereto, in which the flap is spaced farther away from the opening, and for example, in such a way that the free-flowing surface and/or flow volume increases to more of an extent over the travel in a third travel range subsequent to the second travel range, in which the flap is spaced farther away from the opening, than in the second travel range. In other words, the correspondingly contoured elevation may be used in an embodiment to create an at least regionally concave progression of free-flowing surface or flow volume over the travel. This makes it possible to more sensitively adjust the free-flowing surface or flow volume in the first travel range.
In an embodiment, the opening and flap are designed in such a way that a free-flowing surface of the opening and/or flow volume through the opening increases at least essentially linearly over a travel, for example, over the travel of the flap between a closed and maximally open position in at least one travel range. In an embodiment, this makes it possible to advantageously adjust the free-flowing surface or flow volume.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements.
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description.
The waste gas valve actuator may have a flap with a base surface 1, which in a closed position depicted on
The base surface 1 and elevation 3 are rotationally symmetrical relative to an axial direction A denoted by a dash-dot line, which is perpendicular to the base surface 1 and, in the closed position, perpendicular to the opening of the waste gate channel 3.
The elevation 3 in the embodiment on
Accordingly, an outer contour of the elevation 3 in the cross section on
In the exemplary embodiment depicted in
In the exemplary embodiment on
In the exemplary embodiment on
In the exemplary embodiment on
The flap can be pivoted between the closed position depicted on
The opening and flap are designed in such a way that a free-flowing surface of the opening of the waste gate channel 2 and/or flow volume through the opening of the waste gate channel 2 increases to less of an extent over the travel s of the flap between the closed (s=0%) and maximally open position s=100%) in a first travel range s1 than in a second travel range s2 subsequent thereto, in which the flap is spaced farther away from the opening. To this end,
In a view corresponding to
In the embodiment on
In the cross section on
To this end, a dashed line on
In a view corresponding to
In the embodiment on
Accordingly, the elevation 3 here exhibits a flat front surface 3C that faces away from the base surface, and is offset toward the rotational axis D of the flap (to the left on
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims and their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
102015001763.2 | Feb 2016 | DE | national |