Not applicable.
Not applicable.
1. Field of the Invention
The inventions disclosed and taught herein relate generally to processes that generate high temperature waste fluid stream; and more specifically relate to waste gas heat recovery from electric arc furnace (EAF) steelmaking processes using direct evacuation control (DEC).
2. Description of the Related Art
Many industrial processes, such as steelmaking, consume vast quantities of energy and produce a considerable amount of heat in the form of waste fluid, such as waste gas, that is typically unrecovered or wasted. The inventions disclosed and taught herein are directed to an improved system for waste fluid heat recovery and utilization from processes and in particular waste gas heat recovery from flue gasses in electric arc furnace processes using a direct evacuation control method.
One aspect of the present invention comprises a waste heat recovery system, comprising a source of fluid waste heat; a first heat exchanger configured to transfer energy from the hot fluid to a heat transfer fluid; a second heat exchanger configured to transfer energy from the heat transfer fluid to water to produce steam; and an electrical power generating system configured to convert the energy in the steam into electrical energy.
Other aspects of the present invention include an improved waste heat recovery system in which hot exhaust gasses, such as flue gasses, pass through a gas-to-fluid heat exchanger configured to transfer energy in the form of heat to a heat transfer liquid, preferably molten salt. The energy in the molten salt is used to generate useable power such as electrical energy. The waste gas heat recovery system may be adapted for use with batch operations that generate high temperature waste gas, such as steel making processes, and allows continuous or substantially continuous electric power production.
The Figures described above and the written description of specific structures and functions below are not presented to limit the scope of what Applicants have invented or the scope of the appended claims. Rather, the Figures and written description are provided to teach any person skilled in the art to make and use the inventions for which patent protection is sought. Those skilled in the art will appreciate that not all features of a commercial embodiment of the inventions are described or shown for the sake of clarity and understanding. Persons of skill in this art will also appreciate that the development of an actual commercial embodiment incorporating aspects of the present inventions will require numerous implementation-specific decisions to achieve the developer's ultimate goal for the commercial embodiment. Such implementation-specific decisions may include, and likely are not limited to, compliance with system-related, business-related, government-related and other constraints, which may vary by specific implementation, location and from time to time. While a developer's efforts might be complex and time-consuming in an absolute sense, such efforts would be, nevertheless, a routine undertaking for those of skill in this art having benefit of this disclosure. It must be understood that the inventions disclosed and taught herein are susceptible to numerous and various modifications and alternative forms. Lastly, the use of a singular term, such as, but not limited to, “a,” is not intended as limiting of the number of items. Also, the use of relational terms, such as, but not limited to, “top,” “bottom,” “left,” “right,” “upper,” “lower,” “down,” “up,” “side,” and the like are used in the written description for clarity in specific reference to the Figures and are not intended to limit the scope of the invention or the appended claims.
Applicants have created an improved waste heat recovery system in which hot fluids, such as flue gasses, pass through a heat exchanger configured to transfer energy in the form of heat to a heat transfer liquid, preferably molten salt. The energy in the molten salt is used to generate useable power such as electrical energy. For example, a gas-to-fluid heat exchanger may be used to transfer heat from a waste gas to a heat transfer liquid, such as molten salt. The heat transfer liquid is preferable contained in a closed loop system that allows the heated fluid to be accumulated or stored for use as desired or needed. The heated fluid can be drawn from the storage facility to create a working fluid, such as steam, which can be used to generate electricity in a conventional steam turbine generator system. In the event the waste gas heat source is intermittent (e.g., batch) or goes off-line, the present invention is still capable of producing steam and electricity. The waste heat recovery system described herein is especially adapted for use with batch processes that generate high temperature waste gas streams, such as steelmaking processes, and allows continuous or substantially continuous power production.
Turning now to a description of current steelmaking technology,
It will be understood by those of skill in the art that the water cooled ducts of
Turning now to
At this point, the embodiment of the present invention illustrated in
The heat exchanger 220 may be a molten salt cooled duct configured to transfer between about 30 and 40 megawatts-thermal (MWt) to the molten salt, thereby reducing the temperature of the gasses to an expected amount of about 1,000-1,600° F. (538° C.-871° C.) and at about the same rate of 50,000-150,000 scfm. Preferably, the heat exchanger 220 will be made of high heat resistant materials, such as nickel-based alloys. For retrofit or upgrade installations, a molten salt cooled duct system 220 may effectively replace a conventional water cooled duct, e.g. 130 and 116. For example, and without limitation, a duct 220 maybe typically between 8-12 feet in diameter and 150-300 feet in length.
After the exhaust gasses 210 from the furnace 200 give up a portion of its energy in the gas-to-fluid heat exchanger 220, the gasses may be further cooled, conditioned, and directed to a conventional baghouse 230 or other treatment process.
Molten salt 292 exiting the duct 220 may be routed to a hot salt tank 250. The hot salt tank 250 is configured to take advantage of the thermal properties of molten salt and may function as a thermal accumulator, as described below in more detail. Molten salt from the tank 250 (and/or directly from the duct 220) may be provided, e.g. pumped, to a power production system 260 to convert the energy transferred from the hot off-gases 210 to the molten salt 292 into useable power. For example, and without limitation, the power production system 260 may be any power production system, such as an electric power generating system. For example, energy from the molten salt 292 can be transferred through a fluid-to-fluid heat exchanger 270 to generate steam for a steam turbine generator 280. Such power production systems include steam condenser 262 and pump 264. The expected output of such a steam turbine system is about 8-12 about MWe. Of course, the output will vary based on the heat input and the power system used.
As shown in
It will be appreciated that because EAF processes are typically batch processes rather than continuous processes, the waste heat (i.e., flue gasses 210) available for the power production system 260, may be intermittent and/or discontinuous. Storage tank 250 can be configured to minimize or eliminate disruptions in the energy transferred to the power production system 260 from the molten salt. In a preferred embodiment, tank 250 holds enough molten salt 292 to provide up to one hour of power production system's 260 energy requirements.
Other and further embodiments utilizing one or more aspects of the inventions described above can be devised without departing from the spirit of Applicants' invention. For example, while the present invention has been described with respect to implementation in an EAF steelmaking processes, other industrial processes, such as copper converters, cement kilns, or other continuous or batch processes generating high temperature waste gas streams may benefit from this invention. Further, the various methods and embodiments can be included in combination with each other to produce variations of the disclosed methods and embodiments. Discussion of singular elements can include plural elements and vice-versa.
The order of steps can occur in a variety of sequences unless otherwise specifically limited. The various steps described herein can be combined with other steps, interlineated with the stated steps, and/or split into multiple steps. Similarly, elements have been described functionally and can be embodied as separate components or can be combined into components having multiple functions.
The inventions have been described in the context of preferred and other embodiments and not every embodiment of the invention has been described. Obvious modifications and alterations to the described embodiments are available to those of ordinary skill in the art. The disclosed and undisclosed embodiments are not intended to limit or restrict the scope or applicability of the invention conceived of by the Applicants, but rather, in conformity with the patent laws, Applicants intend to fully protect all such modifications and improvements that come within the scope or range of equivalent of the following claims.
This application is based on, claims priority to and benefit of U.S. Provisional Application Ser. No. 61/181,284 filed on May 26, 2009, the entire contents of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61181284 | May 2009 | US |