The subject matter disclosed herein relates to waste heat utilization systems and, more particularly to a generator used in such a system, as well as a method of manufacturing a generator component.
Waste heat recovery systems may be employed to recover low-grade heat, such as heat with a temperature below approximately 500° C., from industrial and commercial processes and operations. For example, waste heat recovery systems may be employed to recover low-grade heat from hot exhaust gases produced by gas turbines. Waste heat recovery systems that implement an organic Rankine cycle (ORC) by circulating an organic working fluid may be particularly efficient at recovering low-grade heat due to the relatively low phase change enthalpies of organic working fluids.
In general, ORC systems may circulate an organic working fluid in a closed loop through a cycle of expansion and pressurization to convert heat into work. For example, the working fluid may be directed through a heat exchanger where the working fluid may absorb heat from a heat source, such as exhaust gas, to vaporize the working fluid. The vaporized working fluid may then be expanded across a turbine to drive a load, such as a generator, that produces electricity. The expanded working fluid may then be directed to another heat exchanger to condense the working fluid into a liquid. The liquid working fluid may then be pressurized in a pump and returned to the first heat exchanger. Typical ORC systems may employ a refrigerant, such as R143a or R245fa, as the organic working fluid and may operate at temperatures of approximately 80° C. to 100° C. However, it may be desirable to operate at higher cycle temperatures to increase the system efficiency and power output.
In certain designs, the ORC systems may include an integrated power module that houses the generator and turbine within a single housing. Within the integrated power module, the working fluid may flow through the turbine and then may flow past and/or through the generator. Accordingly, certain components of the generator may be exposed to the vaporized working fluid.
According to one aspect of the invention, a waste heat utilization system including a generator configured to receive a flow of an organic working fluid. The generator includes a stator and a permanent magnet rotor configured to rotate within the stator to generate electricity. The generator also includes at least one generator component positioned to be exposed to the flow of the organic working fluid. The generator further includes at least one protective layer disposed on the at least one generator component, wherein the at least one protective layer is configured to withstand exposure to the organic working fluid to inhibit contact between the at least one generator component and the organic working fluid.
According to another aspect of the invention, a method of manufacturing a generator component is provided. The method includes preheating the generator component. The method also includes applying a varnish to the generator component. The method further includes baking the generator component with the varnish applied thereto. The method yet further includes cooling the generator component.
According to yet another aspect of the invention, a method of manufacturing a generator component is provided. The method includes placing the generator component in a mold, wherein the generator component comprises at least one of a stator winding, an end turn, a magnetic bearing, and a stator casing. The method also includes disposing an encapsulant proximate the generator component while the generator component is in the mold. The method further includes cooling the generator component with the encapsulant applied thereto.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
The present disclosure is directed to waste heat recovery systems that employ nonpolar organic solvents as working fluids. Within the waste heat recovery systems, the nonpolar organic solvents may be directed through integrated power modules that include varnished and/or encapsulated components designed to be compatible with the nonpolar organic solvents at relatively high temperatures. The use of nonpolar organic solvents as working fluids may enable the waste heat recovery systems to operate at relatively higher cycle temperatures (e.g., 180° C. to 250° C.) as compared to traditional waste heat recovery systems that employ lower temperature fluids, such as R134a or R245fa, and that operate at cycle temperatures of approximately 80° C. to 100° C. in some embodiments. In other embodiments, the temperature may cycle up to 120° C. According to certain embodiments, the nonpolar organic solvents may include toluene, and/or cyclohexane or other nonpolar organic solvents with a lower solubility than cyclohexane, such as propane or butane, among others. The use of the nonpolar organic solvents described herein may be particularly well-suited to recovering heat in the low to intermediate temperature range of approximately 100° C. to 300° C., or more specifically, approximately 150° C. to 250° C., and all subranges therebetween.
The waste heat recovery systems may include multiple organic Rankine cycle (ORC) systems, or loops, arranged in a cascade configuration, with each consecutive ORC system operating at a lower cycle temperature than the preceding ORC system. Each ORC system may direct the working fluid through a cycle of expansion and pressurization to convert waste heat to electricity. In particular, each ORC system may include an integrated power module that includes a turbine and a generator within a single, unitary housing. The working fluid may enter the integrated power module in the vapor phase and may be expanded as it flows through the turbine, which in turn may drive the generator to produce electricity. The working fluid exiting the turbine may then be directed past components of the generator to provide cooling for the generator.
Accordingly, the interior components of the integrated power module may be designed to be compatible with the working fluid that flows through the integrated power module at elevated temperatures. For example, according to certain embodiments, one or more components, such as the stator winding, bearing actuators, or sensors, may be varnished and/or encapsulated with a protective coating that inhibits contact of the working fluid with the components. Rather than traditional varnishes that may swell or dissolve when exposed to the organic working fluid at elevated temperatures (e.g., approximately 150° C. to 300° C.), the protective coatings may be designed to withstand exposure to the organic working fluid at elevated temperatures. Further, in certain embodiments, when applied to stator electrical windings and/or the actuator electrical windings, the protective components also may be designed to secure the windings within their respective slots to impede vibration and coil abrasion.
The waste heat recovery system 10 includes multiple ORC systems 14, 16, and 18 arranged in a high efficiency cascade configuration to transfer heat between the ORC systems. Each ORC system 14, 16, and 18 may include a closed loop that circulates a working fluid through a Rankine cycle within the ORC system 14, 16, or 18. The high temperature ORC system 14 may receive heat from the heat source 12 to vaporize the working fluid within the ORC system 14. Heat from the high temperature ORC system 14 may then be transferred to the intermediate temperature ORC system 16 to vaporize the working fluid within the intermediate temperature ORC system 16. Moreover, heat from the intermediate temperature ORC system 16 may then be transferred to the low temperature ORC system 18 to vaporize the working fluid within the low temperature ORC system 18.
Each ORC system 14, 16, and 18 may circulate a nonpolar organic working fluid within a closed loop. According to certain embodiments, the working fluids employed in the ORC systems 14 and 16 may be high temperature nonpolar organic working fluids, such as toluene, siloxanes, thiophene, hydrocarbon refrigerants, or other suitable high temperature nonpolar organic working fluids. Further, in certain embodiments, each ORC system 14 and 16 may circulate a different working fluid. For example, the working fluid employed within the high temperature ORC system 14 may have a condensation temperature that is greater than the boiling point of the working fluid employed within intermediate temperature ORC system 16. However, in other embodiments, the ORC systems 14 and 16 may both employ the same working fluid.
The working fluid employed in the low temperature ORC system 18 may be a low temperature nonpolar organic working fluid, as compared to the working fluids employed in the high temperature and intermediate temperature ORC systems 14 and 16. For example, the working fluid employed within the low temperature ORC system 18 may be a nonpolar organic solvent that has a boiling point that is lower than the condensation temperature of the working fluid employed within the intermediate temperature ORC system 16. According to certain embodiments, the working fluid employed in the ORC system 18 may include cyclohexane. However, in other embodiments, any other suitable low temperature nonpolar organic solvent may be employed, such as propane, butane, isopentane, isobutane, cyclohexane-propane, cyclohexane-butane, cyclopentane-butane, or cyclopentane-pentafluoropropane, among others. In certain embodiments, the working fluid employed in the low temperature ORC system 18 may include a nonpolar organic solvent that has a solubility that is less than or equal to the solubility of cyclohexane, as measured by the Hildebrand solubility parameters. According to certain embodiments, the ORC system 18 may employ a nonpolar organic solvent with a critical temperature of approximately 100° C. to 300° C. to facilitate the recovery of waste heat in the temperature range of approximately 150° C. to 250° C.
As may be appreciated the individual working fluids used within each ORC system 14, 16, and 18 may depend on parameters, such as the temperature of the heat source 12 and the size and type of equipment included within the ORC systems, among others.
Each ORC system 14, 16, and 18 includes an integrated power module 20, 22, or 24 that converts heat to electricity. Each integrated power module 20, 22, and 24 includes a turbine 26, 28, or 30 and a generator 32, 34, or 36 contained in a single, unitary housing. According to certain embodiments, the turbine 26, 28, or 30 and the generator 32, 34, or 36 of each integrated power module 20, 22, and 24 may be contained within a hermetically sealed housing without a shaft seal. Further, in certain embodiments, the turbines 26, 28, and 30 may include radial turbines, and the generators 32, 34, and 36 may include high speed, permanent magnet generators. However, in other embodiments, other suitable types of turbines and/or generators may be employed. Vapor phase working fluid may enter each integrated power module 20, 22, and 24 and expand as it flows through the turbine 26, 28, or 30 to drive the generator 32, 34, or 36, as discussed further below with respect to
The high temperature ORC system 14 includes a heat exchanger 38 that transfers heat from the heat source 12 to the working fluid flowing through the heat exchanger 38. According to certain embodiments, the heat exchanger 38 may be designed to directly transfer heat from the heat source 12 to the working fluid. For example, the heat exchanger 38 may be a boiler that receives exhaust gas from the heat source 12 and transfer heat from the exhaust gas to the working fluid flowing through tubes within the heat exchanger 38. In these embodiments, the cooled exhaust gas exiting the heat exchanger 38 may be directed to a vent control system 40 that regulates release of the cooled exhaust gas to the environment. However, in other embodiments, the heat exchanger may be designed to receive an intermediate fluid, such as thermal oil, that has been heated by the heat source 12. In these embodiments, the heat exchanger may be a shell and tube heat exchanger, shell and plate heat exchanger, or the like, that transfers heat from the intermediate fluid to the working fluid flowing through the heat exchanger 38.
Within the heat exchanger 38, the working fluid may absorb heat from the heat source to vaporize the working fluid. In certain embodiments, the working fluid may be heated to a temperature of approximately 400° C. Upon exiting the heat exchanger 38, the vapor phase working fluid may then flow to the integrated power module 20. Within the integrated power module 20, the working fluid may be expanded as it flows through the turbine 26 to drive the generator 32. For example, as the working fluid expands, the working fluid may rotate blades or a wheel of the turbine, which may be coupled to the generator 32. The expanded working fluid may exit the turbine 26 as a low temperature and pressure vapor that flows past and/or through the generator 32 to exit the integrated power module 20. There may be a controlled bypass from heat exchanger 38 directly to heat exchanger 42 so that in the event the integrated power module 20 malfunctions, the next loop 16 may still function by obtaining the heat source needed from the heat exchanger 42. The bypass described above may also be present from the heat exchanger 42 to heat exchanger 46, from heat exchanger 46 to heat exchanger 50, and so on for each of the heat exchangers.
From the integrated power module 20, the working fluid may enter a heat exchanger 42 as a low temperature and pressure vapor. The heat exchanger 42 circulates the working fluid of the high temperature ORC system 14, as well as the working fluid of the intermediate temperature ORC system 16. Accordingly, the heat exchanger 42 may be a shared heat exchanger that is common to both the high temperature ORC system 14 and the intermediate temperature ORC system 16. Within the heat exchanger 42, the working fluid of the high temperature ORC system 14 may transfer heat to the working fluid of the intermediate temperature ORC system 16 to condense the working fluid of the high temperature ORC system 14 into a liquid. For a shared heat exchanger, its backup may be installed such that heat exchanger 42 may be connected as a backup in the event of malfunction of heat exchanger 46. The temperature in heat exchanger 42 may be lowered to that of heat exchanger 46 in such an arrangement. The same concept is applied to heat exchanger 46 connecting to loop 58 in case of malfunction of heat exchanger 50 in
Through the shared heat exchanger 42, the working fluid flowing within the high temperature ORC system 14 may transfer heat to the working fluid flowing within the intermediate temperature ORC system 16. Specifically, as the working fluid of the intermediate temperature ORC system 16 flows through the shared heat exchanger 42, the working fluid of the intermediate temperature ORC system 16 may absorb heat from the working fluid of the high temperature ORC system 14 to vaporize the working fluid of the intermediate ORC system 16. In certain embodiments, the working fluid may be heated to a temperature of approximately 300° C. The vapor phase working fluid may then enter the integrated power module 22 where the working fluid may be expanded as it flows through the turbine 28 to drive the generator 34. The expanded working fluid may exit the turbine 28 as a low temperature and pressure vapor that flows past and/or through the generator 34 to exit the integrated power module 22.
From the integrated power module 22, the working fluid may enter a heat exchanger 46 as a low temperature and pressure vapor. The heat exchanger 46 circulates the working fluid of the intermediate temperature ORC system 16, as well as the working fluid of the low temperature ORC system 18. Accordingly, the heat exchanger 46 may be a shared heat exchanger that is common to both the intermediate temperature ORC system 16 and the low temperature ORC system 18. Within the heat exchanger 46, the working fluid of the intermediate temperature ORC system 16 may transfer heat to the working fluid of the low temperature ORC system 18 to condense the working fluid of the intermediate temperature ORC system 16 into a liquid. The liquid phase working fluid may then flow through a pump 48 that pressurizes the working fluid and circulates the working fluid within the ORC system 16. From the pump 48, the working fluid may then return to the heat exchanger 42 where the cycle may begin again.
Through the shared heat exchanger 46, the working fluid flowing within the intermediate temperature ORC system 16 may transfer heat to the working fluid flowing within the low ORC system 18. Specifically, as the working fluid of the low temperature ORC system 18 flows through the shared heat exchanger 46, the working fluid of the low temperature ORC system 18 may absorb heat from the working fluid of the intermediate temperature ORC system 16 to vaporize the working fluid of the low temperature ORC system 18. In certain embodiments, the working fluid may be heated to a temperature of approximately 200° C. The vapor phase working fluid may then enter the integrated power module 24 where the working fluid may be expanded as it flows through the turbine 30 to drive the generator 36. According to certain embodiments, the temperature of the working fluid entering the integrated power module 24 may be greater than approximately 150° C. to 200° C., and all subranges therebetween. More specifically, the temperature of the working fluid entering the integrated power module 24 may be greater than approximately 150° C. to 180° C., and all subranges therebetween. The expanded working fluid may then exit the turbine 30 as a low temperature (such as 150° C., for example) and pressure vapor (such as 2 bars, for example) that flows past and/or through the generator 36 to exit the integrated power module 24.
From the integrated power module 24, the working fluid may flow through a heat exchanger 50 where the working fluid may be condensed by a cooling fluid circulated through the heat exchanger 50 by a cooling system 52. According to certain embodiments, the cooling system 52 may circulate a cooling fluid, such as water, to the heat exchanger 50 from a cooling tower or cooling reservoir. Further, in other embodiments, the cooling system 52 may be a cooling system, such as a chilled water system, used in other areas of the process or facility that includes the heat source 12. Moreover, in yet other embodiments, the heat exchanger 50 may be an air-to-liquid heat exchanger and the cooling system 52 may include a fan and motor that draw ambient air across the heat exchanger 50.
The liquid phase working fluid exiting the heat exchanger 50 may then flow through a pump 54 that pressurizes the working fluid and circulates the working fluid within the ORC system 18. From the pump 54, the working fluid may return to the heat exchanger 46 where the cycle may begin again.
The cascade arrangement of the ORC systems 14, 16, and 18 may generally allow an increased amount of heat recovery over a larger temperature range, as compared to non-cascade systems. For example, the high temperature ORC system 14 may allow recovery of heat in higher temperature ranges, such as approximately 350 to 500° C., while the intermediate temperature ORC system 16 may allow recovery of heat in intermediate temperature ranges, such as approximately 250° C. to 350° C. Further, the low temperature ORC system 18 may allow recovery of heat in low to intermediate temperature ranges, such as approximately 150° C. to 250° C. As discussed above, the low temperature ORC system 18 may employ a nonpolar organic solvent as the working fluid to facilitate the recovery of heat in the low to intermediate temperature range. According to certain embodiments, the nonpolar organic solvent may have a critical temperature in the range of approximately 100° C. to 300° C., and may have a solubility that is less than or equal to the solubility of cyclohexane, as measured by the Hildebrand solubility parameters. As may be appreciated, the temperature ranges are provided by way of example, and are not meant to be limiting. In other embodiments, the temperatures existing in each ORC system 14, 16, and 18 may vary depending on factors, such as they type of the heat source provided, the temperature of the heat source 12, and the number of ORC systems included within the waste heat recovery system, among others.
As may be appreciated, additional equipment such as pumps, valves, control circuitry, pressure and/or temperature transducers or switches, among others may be included within the waste heat recovery system 10. For example, each heat exchanger 38, 42, 46, and 50 may include a pressure relief valve or vent. Furthermore, the types of equipment included within the waste heat recovery system 10 may vary. For example, according to certain embodiments, the heat exchangers 38, 42, 46, and 50 may include shell and tube heat exchangers, fin and tube heat exchangers, plate heat exchangers, plate and shell heat exchangers, or combinations thereof, among others. Moreover, in other embodiments, additional ORC systems may be included within the waste heat recovery system to allow the recovery of waste heat at additional temperatures.
The waste heat recovery system 56 includes the ORC systems 14, 16, and 18, which may operate in a manner generally similar to that described above with respect to
The working fluid employed in the ORC system 58 may be a lower temperature nonpolar organic working fluid, as compared to the working fluids employed in the ORC systems 14, 16, and 18. For example, the working fluid employed within the ORC system 58 may be a nonpolar organic solvent that has a boiling point that is lower than the condensation temperature of the working fluid employed within the low temperature ORC system 18. According to certain embodiments, the working fluid employed in the ORC system 58 may include butane, propane, or other nonpolar organic solvents that have a solubility that is less than or equal to the solubility of cyclohexane, as measured by the Hildebrand solubility parameters.
The working fluid employed in the ORC system 60 may be a lower temperature nonpolar organic working fluid, as compared to the working fluids employed in the ORC systems 14, 16, 18, and 58. For example, the working fluid employed within the ORC system 60 may be a nonpolar organic working fluid that has a boiling point that is lower than the condensation temperature of the working fluid employed within the low temperature ORC system 58. According to certain embodiments, the working fluid employed in the ORC system 60 may include R245ca, R245fa, R134a, R123, or R236fa, among others.
Each ORC system 58 and 60 includes an integrated power module 62 or 64 that converts heat to electricity, in a manner similar to that described above with respect to the integrated power modules 20, 22, and 24 (
The ORC system 58 receives heat from the ORC system 18 through the shared heat exchanger 50. In particular, within the heat exchanger 50, the working fluid of the ORC system 18 may transfer heat to the working fluid flowing within the ORC system 58. Accordingly, in the embodiment shown in
From the integrated power module 62, the working fluid may enter a heat exchanger 74 as a low temperature and pressure vapor. The heat exchanger 74 circulates the working fluid from the ORC system 58, as well as the working fluid from the ORC system 60. Accordingly, the heat exchanger 74 may be a shared heat exchanger that is common to both the ORC system 58 and the ORC system 60. Within the heat exchanger 74, the working fluid of the ORC system 58 may transfer heat to the working fluid of the lowest temperature ORC system 60 to condense the working fluid of the ORC system 58 into a liquid. The liquid phase working fluid may then flow through a pump 76 that pressurizes the working fluid and circulates the working fluid within the ORC system 58. From the pump 76, the working fluid may return to the heat exchanger 50 where the cycle may begin again.
Through the shared heat exchanger 74, the working fluid flowing within the ORC system 58 may transfer heat to the working fluid flowing within the lowest temperature ORC system 60. Specifically, as the working fluid of the lowest temperature ORC system 60 flows through the shared heat exchanger 74, the working fluid of the lowest temperature ORC system 60 may absorb heat from the working fluid of the ORC system 58 to vaporize the working fluid of the lowest temperature ORC system 60. In certain embodiments, the working fluid may be heated to a temperature of approximately 100° C. The vapor phase working fluid may then enter the integrated power module 64 where the working fluid may be expanded as it flows through the turbine 68 to drive the generator 72. The expanded working fluid may exit the turbine 68 as a low temperature and pressure vapor that flows past and/or through the generator 72 to exit the integrated power module 64.
From the integrated power module 64, the working fluid may flow through a heat exchanger 78 where the working fluid may be condensed by a cooling fluid that is circulated through the heat exchanger 78 by a cooling system 80. According to certain embodiments, the cooling system 80 may circulate a cooling fluid, such as water, to the heat exchanger 78 from a cooling tower or cooling reservoir. Further, in other embodiments, the cooling system 80 may be a cooling system, such as a chilled water system, used in other areas of the process or facility that includes the heat source 12. Moreover, in yet other embodiments, the heat exchanger 78 may be an air-to-liquid heat exchanger and the cooling system 80 may include a fan and motor that draw ambient air across the heat exchanger 78.
The liquid phase working fluid exiting the heat exchanger 78 may then flow through a pump 82 that pressurizes the working fluid and circulates the working fluid within the ORC system 60. From the pump 82, the working fluid may return to the heat exchanger 74 where the cycle may begin again.
Each of the additional heat exchangers 96, 98, 100, and 102 circulates a cooling fluid from a cooling system 106, 108, 110, or 112. Accordingly, the heat exchangers 96, 98, 100, and 102 may function as condensers. As shown in
The cooling systems 106, 108, 110, and 112 may be designed to at least partially condense the working fluid flowing through the heat exchangers 96, 98, 100, and 102 in order to provide at least some liquid phase working fluid to the shared heat exchangers 42, 46, 50, and 74. In these embodiments, the shared heat exchangers 42, 46, 50, and 74 may further condense and/or subcool the working fluid that flows through the heat exchangers 42, 46, 50, and 74 from the additional heat exchangers 96, 98, 100, and 102. In certain embodiments, the subcooling of the working fluids may increase the operating efficiency of the ORC systems 86, 88, 90, and 92.
Moreover, in certain embodiments, the additional heat exchangers 96, 98, 100, and 102 may be designed to fully condense the working fluid exiting the integrated power modules 20, 22, 24, and 62. For example, in certain embodiments, the working fluid of the ORC system 86, which may be steam-driven, may be heated to approximately 400° C. in the heat exchanger 38, and the additional heat exchanger 96 may be designed to condense and cool the working fluid to approximately 300° C. The working fluid of the ORC system 88 may be heated to approximately 300° C. in the heat exchanger 42, and the additional heat exchanger 98 may condense and cool the working fluid to approximately 200° C. The working fluid of the ORC system 90 may be heated to approximately 200° C. in the heat exchanger 46, and the additional heat exchanger 100 may condense and cool the working fluid to approximately 150° C. The working fluid of the ORC system 92 may be heated to approximately 150° C. in the heat exchanger 50, and the additional heat exchanger 102 may condense and cool the working fluid to approximately 100° C. Finally, the working fluid of the ORC system 94 may be heated to approximately 100° C. in the heat exchanger 74. Accordingly, in this embodiment, the additional heat exchangers may be designed to cool the working fluids to the temperature to which the working fluid in the adjacent lower temperature ORC system is heated. However, in other embodiments, the temperatures that the working fluids are heated to and/or cooled to may vary. For example, in other embodiments, the additional heat exchangers 96, 98, 100, and 102 may be designed to cool the working fluid to a temperature greater than the temperature to which the working fluid in the adjacent lower temperature ORC system is heated.
The integrated power module 24 includes the turbine 30 and the generator 36, described above with respect to
Radial magnetic bearings 128 and 130 may be mounted on the bearing frames 122 and 124 to rotatably support the turbine 30 and a permanent magnetic (PM) rotor 132 of the generator 36 within the casing 116. For example, the radial magnetic bearings 128 and 130 may support a shaft 134 that is co-shafted with the micro-turbine or flywheel 30 to the high-speed PM rotor 132. Radial sensor assemblies 129 and 131 may be employed to detect the radial position of the PM rotor 132. The bearing frames 122 and 124 also may support high-temperature-grease/film lubricated backup bearings 136 and 138 that may be employed to support the shaft 134 when the radial magnetic bearings 128 and 130 are unavailable, for example, due to a power outage. Further, the bearing frame 122 also may support axial bearings 140 that support the micro-turbine 30 and the rotor 132 in the axial direction. A sensor assembly 141 may be employed to detect the axial position of the rotor 132. As shown in
The vapor phase working fluid may enter the integrated power module 24 through the inlet conduit 118 and may flow through the integrated power module 24 as generally indicated by arrows 142. According to certain embodiments, the working fluid may enter the integrated power module 24 at a temperature greater than approximately 150° C. to 180° C. in some embodiments, and greater than 180° C. to 200° C. from the inlet in some embodiments, and all subranges therebetween, and a pressure greater than or equal to approximately 8 bar. A diverter cone 144 may be disposed within the inlet conduit 118 to direct the working fluid through an inducer channel 146 to the turbine 30. The vapor phase working fluid may expand as it flows through the turbine 30, which in turn may rotate a wheel 147 of the turbine 30. The expanded working fluid may then exit the turbine 30 and flow through an exhaust conduit 148 towards the generator 36. According to certain embodiments, the working fluid exiting the turbine 30 may have a temperature approximately 130 to 150° C., depending on the length of the hermetic generator casing, and all subranges therebetween, and a pressure of approximately 2 bar.
As disclosed above, the turbine 30 may be co-axial in one piece with the shaft 134. Accordingly, as the turbine wheel 147 rotates, the PM rotor 132 is rotated synchronously. For example, the magnetized rotor 132 may rotate within a stator 150 that includes magnetic windings 152 to generate electricity. End turns 153 (e.g., end windings), which are portions of the slotted windings 152, may extend beyond the 2-4 dozens of slots of stator 150. The stator 150 may be disposed circumferentially about the rotor 132, and may generally encircle the rotor 132. According to certain embodiments, the electricity produced by the generator 36 may be transferred to an electronics package disposed outside of the casing 116 to produce electrical power. The electrical power may be AC or DC power that may be employed to power a standalone machine or facility or that may be provided to a power grid. According to certain embodiments, approximately 1 to 350 kW of power may be produced by the integrated power module 24 at rotating speed up to 30,000 rpm.
The generator 36 also includes a stator casing 154, such as a silicon steel laminate stack, that can be employed to mount the windings 152 within the stator 150. As discussed further below with respect to
According to certain embodiments, the temperature of the working fluid within the integrated power module 24 may range from approximately 130° C. to 250° C., or more specifically between approximately 130° C. and 200° C. between the inlet and outlet, and all subranges therebetween. At these elevated temperatures, the nonpolar organic solvents that are employed in the ORC system 18 may penetrate into components of the generator 36, such as the windings 152. The windings are randomly wound coils insulated with enamels of a thermal class of at least 180 and whose temperature index at 20,000 hours is at least 180° C. to 220° C. They may resist the high thermal stress, however, they will not resist ORC working fluid attack under those temperatures, if penetrated, thereby causing debonding and degradation of winding coils in the slots, and thus winding vibration. Accordingly, as disclosed further below with respect to
In addition to flowing through the generator 36, the working fluid may be directed between the generator and the casing 116 by fins 158 that may be disposed along the interior of the casing 116. The fins may direct the working fluid towards the outlet conduit 120. A diverter cone 160 may be included within the outlet conduit 120 to direct the working fluid towards the exit of the integrated power module 24.
As described below with respect to
The varnish 166 may be a high performance aromatic epoxy compound that is vacuum impregnable and compatible with nonpolar organic working fluids, such as toluene and/or cyclohexane, at elevated temperatures of approximately 100° C. to 300° C., or more specifically, approximately 150° C. to 250° C. For example, the varnish 166 may include an epoxy resin, a reactive diluent, and a catalyst. The epoxy resin may have single or multiple aromatic rings in its backbone and may be epoxidized with epichlorohydrin or an epichlorohydrin derivative. For example, the epoxy resin may be epoxidized with a phenol formaldehyde resin, such as a Novolac resin or phenolic resin. In certain embodiments, the Novolac resin may have 3-7 repeating units, an equivalent weight of approximately 176-210 mol/equivalent, and an average functionality of 2-4. According to certain embodiments, the aromatic epoxy resin may also be a Bisphenol A or Bisphenol F based benzoxazine epoxidized resin built on substituted alkyl phenol resin molecules (e.g., a cresol formaldehyde phenolic-epoxy resin), or built on phenol formaldehyde Novolac epoxy resin molecules. The aromatic epoxy resin may include D.E.N. 438™ or D.E.N. 439™ from Dow Chemicals.
In certain embodiments, the varnish 166 may include at least approximately 50% by weight of aromatic epoxy resin, at least approximately 10% by weight of aliphatic epoxy resin, less than approximately 15% by weight of a reactive diluent, and less than approximately 10% by weight of catalyst and a crosslinking agent. For example, the varnish may include approximately 50-70% by weight of aromatic epoxy resin, and all subranges therebetween; approximately 10-20% by weight of aliphatic epoxy resin, and all subranges therebetween; approximately less than 15% by weight of a reactive diluent, and all subranges therebetween; and approximately 1-10% by weight of catalyst and a crosslinking agent, and all subranges therebetween. Further, in other embodiments, the epoxy resin may additionally include EP46HT-1 from Masterbond, and Epoxylite® E8628 HT from Elantas, Evonik Polyimide P84®, Araldite® MT 35600 or Araldite® MT 35700, commercially available from Huntsman Corporation of Salt Lake City, Utah.
The reactive diluent may be included in the varnish 166 to adjust the viscosity to approximately 400-4000 centipoise (cps), and all subranges therebetween, at the manufacturing or impregnating temperature to facilitate varnishing. More specifically, the varnish 166 may have a viscosity of approximately 400-2000 cps, and all subranges therebetween. According to certain embodiments, the reactive diluent may include butyl glycidyl ether, p-t-butyl phenyl glycidyl ether, cresyl glycidyl ether, or vinyl toluene, among others. Further, in certain embodiments, the varnish 166 may include approximately 15-30% by weight of the aromatic-based reactive diluent, and all subranges therebetween. The catalysts and crosslinking agents may include a secondary amine, a tertiary amine, or imidazoles or their polymeric derivatives, aluminum acetylacetonate, among other components that have desirable epoxy onset curing temperatures compatible with the manufacturing conditions. Further, the catalyst and crosslinking agent may be stable at room temperatures and may be triggered for crosslinking at certain curing temperatures once added into the epoxy, such as approximately 20° C. to 165° C.
The varnish 166 may be designed to resist corrosion by nonpolar organic working fluids at elevated temperatures of approximately 150° C. to 250° C. For example, the varnish 166 may have a shore durometer (i.e. shore D) hardness of greater than or equal to 90, as measured by ASTM D2240-05 (2010). In another example, the varnish 166 may have a twisted coil bonding strength of at least approximately 50, 60, or 70 pounds as measured by ASTM D4482-11 after exposure to a nonpolar organic working fluid, such as cyclohexane, at approximately 180° C. Further, the varnish 166 may be designed to withstand at least 12 cycles of thermal cycling from approximately −20° C. to 165° C. without exhibiting visual cracks. More specifically, the varnish 166 may be designed to withstand at least 25 cycles of thermal cycling from −20° C. to 165° C. without exhibiting visual cracks. Moreover, the volatile content of the varnish 166 that is extractable by the nonpolar organic working fluid may be less than or equal approximately 4% by weight. The varnish 166 also may have a glass transition temperature of at least approximately 135° C., or more specifically, at least approximately 150° C. Further, the varnish 166 may be designed to have a temperature index greater than 155° C. in accordance to ASTM E1877 and ASTM E1641 using 5% weight loss as an endpoint criterion. Further, the varnish 166 may have thermal endurance of at least 40,000 hours when exposed to the nonpolar organic working fluid at approximately 150° C. in an accelerated life test using Arrhenius extrapolation with a 5% weight loss of varnish as an endpoint criterion.
The method may then continue by preheating (block 184) the component. For example, the component may be preheated in an oven to temperatures of approximately 70° C. to 130° C. to remove moisture from the component. After preheating, the varnish may be applied (block 186) to the component. For example, the component may be submerged in a bath of the varnish for approximately 30 minutes to impregnate the component with varnish. According to certain embodiments, the component may be submerged by at least 0.25 inches below the surface of the varnish bath. The component may then be baked (block 188) to cure the varnish. For example, the component may be heated in gradual steps in an oven for at least approximately 3 hours to reach a temperature of approximately 160° C. Further, in certain embodiments, the initial curing step may be followed by a post-curing step. For example, the component may be cured for approximately 4-12 hours at a temperature of approximately 120° C. to 165° C. In certain embodiments, the component may be rotated to different positions during the curing process. The component may then be removed from the oven and allowed to cool gradually (block 190). For example, the component may be cooled in a series of declining temperature steps until the component reaches a temperature of less than approximately 60° C. As may be appreciated, the curing process, curing temperatures, curing times and/or cooling process, temperatures, and times may vary based on factors such as the type of varnish employed and the size of the component, among others. If additional coats of varnish are desired to provide a thicker coating, blocks 186, 188, and 190 may be repeated until the desired thickness is achieved. The varnished component may then be installed (block 192) within an integrated power module.
As described below with respect to
However, in other embodiments, the encapsulant 194 may be disposed directly on the coils 176, or may disposed directly on cloth 164 that may be wrapped around the coils 176 (
The encapsulant 194 may be a high temperature, highly filled epoxy encapsulant that is compatible with nonpolar organic working fluids, such as toluene and/or cyclohexane, at elevated temperatures of approximately 100° C. to 300° C., or more specifically, approximately 150° C. to 250° C., and all subranges therebetween. The encapsulant 194 may include an epoxy resin base that has single or multiple aromatic rings in its backbone. For example, the epoxy resin base may include a phenolic base resin or a naphthalene base resin. According to certain embodiments, the encapsulant 194 may additionally include Stycast® 2762 FT, commercially available from Emerson & Cuming of Billerica, Mass.; Araldite® CW 9029, commercially available from Huntsman Corporation; a two part epoxy of Araldite® CW 9029 and Aradur® HW 9029, commercially available from Huntsman Corporation; or a two part epoxy of Araldite® CW 5725 and Aradur® HY5726, also commercially available from Huntsman Corporation; among others.
Further, the encapsulant 194 may include a filler content (e.g., mechanically reinforcing fillers) of at least approximately 50% by weight, or more specifically, at least approximately 60% by weight. According to certain embodiments, the fillers may be designed to reduce thermal expansion and/or contraction and to provide a high thermal conductivity, and to provide resistance to ORC working fluids. For example, in certain embodiments, the fillers may have a thermal conductivity of at least approximately 0.7 W/(m K). Moreover, in certain embodiments, the encapsulant 194 may include a softening agent, such as a diglycidylether of polypropyleneglycol, designed to inhibit cracking of the encapsulant 194. For example, the encapsulant 194 may include approximately 10-20% by weight of a softening agent, and all subranges therebetween. More specifically, the encapsulant 194 may include approximately 10% by weight of a softening agent. According to certain embodiments, the softening agent may include Araldite® CY 221, commercially available from Huntsman Corporation.
The encapsulant 194 may be designed to resist extraction by nonpolar organic working fluids at elevated temperatures of approximately 150° C. to 250° C. For example, the encapsulant 194 may have a shore durometer (i.e. shore D) hardness of greater than or equal to 90, as measured by ASTM D2240-05 (2010). Further, the encapsulant 194 may be designed to withstand at least 12 cycles of thermal cycling from approximately −20° C. to 165° C. without exhibiting visual cracks. More specifically, the encapsulant 194 may be designed to withstand at least 25 cycles of thermal cycling from approximately −20° C. to 165° C. without exhibiting visible cracks. Moreover, the volatile content of the encapsulant 194 that is extractable by the nonpolar organic working fluid may be less than or equal approximately 1.5% by weight, or more specifically less than or equal to approximately 1% by weight. Further, the encapsulant 194 also may have a glass transition temperature of at least approximately 100° C. Further, the encapsulant 194 may have its temperature index greater than 155° C. determined in accordance to ASTM E1877 and ASTM E1641 using 5% weight loss as an endpoint criterion. Furthermore, the encapsulant 194 may have thermal endurance of at least 40,000 hours when exposed to the nonpolar organic working fluid at approximately 150° C. in an accelerated life test using Arrhenius extrapolation with a 5% weight loss of varnish as an endpoint criterion.
The processing method may then continue by placing (block 202) the component within a mold. According to certain embodiments, the mold may be designed to surround portions of the component to be encapsulated. For example, in embodiments where the component includes stator windings 152, the mold may be designed to encircle the interior and exterior of the end turns 153 (
The encapsulant may then be allowed to cure (block 208) within the mold. For example, the encapsulant may be cured for approximately 4-6 hours at a temperature of approximately 80° C. In another example, the encapsulant may be cured for approximately 2 hours at approximately 100° C. Further, in certain embodiments, the initial curing step may be followed by a post-curing step. For example, the encapsulant may be postcured in the mold for approximately 2 hours at a temperature of approximately 140° C. In another example, the encapsulant may be postcured for approximately 10 hours at a temperature of approximately 130° C. As may be appreciated, the curing process, temperatures, and/or times may vary based on factors such as the type of encapsulant employed and the size of the component, among others. After curing, the mold may be removed (block 210) and the encapsulated component may then be installed (block 212) within an integrated power module.
As described above, the varnished components and/or the encapsulated components may be particularly well suited for use in integrated power modules that circulate nonpolar organic solvents, such as cyclohexane and/or toluene, at elevated temperatures of approximately 100° C. to 300° C., or more specifically, approximately 150° C. to 250° C. The varnish and/or the encapsulant may provide a thick protective layer designed to provide bonding and sealing properties that inhibit contact between the underlying component and the nonpolar organic solvents. The protective layer may allow nonpolar organic Ranke cycle working fluids, such as toluene and/or cyclohexane, to be used in the ORC systems without degrading components of the integrated power modules.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application is a continuation application of U.S. application Ser. No. 13/343,490, now published as U.S. Patent Application Publication No. 2013/0168964, which is entitled “WASTE HEAT RECOVERY SYSTEM GENERATOR ENCAPSULATION,” and was filed on Jan. 4, 2012. The entire contents of U.S. application Ser. No. 13/343,490 are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13343490 | Jan 2012 | US |
Child | 14325962 | US |