This application claims the benefit under 35 U.S.C. ยง 119(a) of Korean Patent Application No. 2003-45388, filed on Jul. 4, 2003, in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference.
The present invention relates to an electrophotographic printer. More particularly, the present invention relates to a waste toner transfer apparatus to transfer waste toner generated during a printing process to a waste toner storage container and an electrophotographic printer adopting the same.
In an image forming process of an electrophotographic printer, when an exposure unit scans light corresponding to image information onto a photoreceptor that is charged to a predetermined electric potential, an electrostatic latent image is formed on the photoreceptor. A developing unit supplies toner to the electrostatic latent image to form a toner image. Generally, four developing unites containing toners for cyan, magenta, yellow, and black colors are needed for a color electrostatic latent printer. The toner image is transferred onto a recording medium directly, or via an intermediate medium, from the photoreceptor. While the recording medium passes through a fusing unit, the toner image is fused onto the recording medium by heat and pressure. As a result of the above processes, a mono or color image is printed on the recording medium.
While a wet type electrophotographic printer uses a wet developer formed by dispersing toner powder in a liquid carrier, a dry type electrophotographic printer uses toner powder as a developer. Waste toner remaining on the photoreceptor or intermediate transfer medium during the image forming process is removed therefrom. The removed waste toner is collected in a waste toner storage container. The electrophotographic printer typically includes a waste toner transfer apparatus to transfer waste toner to the waste toner storage container.
Referring to
Referring to
In the waste toner transfer apparatus 2 configured as above, although the guide portion 20 is inclined downward so that the waste toner slides down, waste toner particles sometimes coagulate into a waste toner lump due to an attraction force between the toner particles so that the waste toner remains on the guide portion 20 without falling into the waste toner storage container 10. When the waste toner is left for a long time in an environment of high temperature and high humidity, the waste toner hardens and accumulates on the guide portion 20. The hardened waste toner then prevents the waste toner that falls on the guide portion 20 from sliding down so that the amount of waste toner accumulated on the guide portion 20 gradually increases. As the process proceeds, as shown in
To solve the above and/or other problems, embodiments of the present invention provides a waste toner transfer apparatus which effectively transfers waste toner removed from an image holding body, such as a photoreceptor or an intermediate transfer medium to a waste toner storage container, so that the waste toner does not accumulate during the transfer process, and an electrophotographic printer having the same.
According to an aspect of the present invention, there is provided a waste toner transfer apparatus in an electrophotographic printer to transfer waste toner removed by a cleaning unit from an image holding body, where a toner image is temporarily held, to a waste toner storage container. The waste toner transfer apparatus comprises a duct connecting the cleaning unit and the waste toner storage container, a transfer unit installed in the duct to transfer the waste toner, a guide portion disposed at an outlet of the duct and inclined downward to guide the waste toner toward the waste toner storage container, and an agitation member installed on the guide portion and moving to prevent the waste toner from accumulating on the guide portion.
According to another aspect of the present invention, there is provided an electrophotographic printer including an image holding body for temporarily holding a toner image in an image forming process, a cleaning unit for removing waste toner remaining on the image holding body, a waste toner storage container, and a waste toner transfer apparatus for transferring the waste toner from the cleaning unit to the waste toner storage container. The waste toner transfer apparatus comprises a duct connecting the cleaning unit and the waste toner storage container, a transfer unit installed in the duct to transfer the waste toner, a guide portion disposed at an outlet of the duct and inclined downward to guide the waste toner toward the waste toner storage container, and an agitation member installed on the guide portion to move, and to thereby prevent the waste toner from accumulating on the guide portion.
The agitation member preferably moves by being engaged with the transfer unit. The transfer unit comprises a rotating shaft, a conveying coil coupled to the shaft for rotating, wherein the waste toner transfer apparatus further comprises a cam member having a cam profile and coupled to one end portion of the conveying coil close to the waste toner storage container and, as the cam member rotates, the agitation member contacts the cam profile and moves.
The transfer unit preferably comprises an auger having a shaft and a spiral wing formed on an outer circumference of the shaft for rotating, and a conveying coil coupled to the shaft for rotating together with the auger. A cam member having a cam profile is coupled to one end portion of the conveying coil and, as the cam member rotates, the agitation member contacts the cam profile and moves.
The duct comprises a first duct in which the waste toner enters from the cleaning unit, a second duct connected to the first duct, and a third duct which is soft and connects the second duct and the waste toner storage container, and the auger is installed in the second duct and the conveying coil is coupled to the auger and inserted in the third duct.
The above and other features and advantages of the present invention will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which:
Throughout the drawings, it should be understood that like reference numbers refer to like features and structures.
Referring to
The photoreceptive drum 101, as an example of a photoreceptor, has a photoconductive substance layer formed on the outer circumferential surface of a metal drum. A photoreceptive belt 112 as shown in
The exposure unit 102 forms an electrostatic latent image by scanning light corresponding to image information onto the photoreceptor drum 101 which is charged to a uniform electric potential. Generally, a laser scanning unit (LSU) using a laser diode as a light source is used as the exposure unit 102.
Four developing units 103C, 103M, 103Y, and 103K respectively contain solid powder toners for cyan (C), magenta (M), yellow (Y), and black (K) colors, and provide the toners to the electrostatic latent image formed on the photoreceptive drum 101 to form toner images.
The transfer belt 104 is an example of an intermediate transfer medium which transfers the toner image received from the photoreceptor to a recording medium S. A transfer drum 113 as shown in
The transfer roller 105 is installed to face the transfer belt 104. The transfer roller 105 is separated from the transfer belt 104 when the color toner image is transferred to the transfer belt 104. When the color toner image is completely transferred to the transfer belt 104, the transfer roller 105 contacts the transfer belt 104 with a predetermined pressure to transfer the color toner image to the recording medium S. When the recording medium S to which the toner image is transferred passes through a fusing unit 106, the toner image is fused onto the recording medium S by heat and pressure. A charger 107 charges the photoreceptive drum 101 to a uniform electric potential. A discharger 108 discharges charges remaining on the photoreceptive drum 101.
The image forming process performed by the electrophotographic printer having the above-described structure is described below.
Color image information includes information on cyan (C), magenta (M), yellow (Y), and black (K) colors. In the present embodiment, the color toner image for cyan (C), magenta (M), yellow (Y), and black (K) colors are sequentially overlapped on the transfer belt 104 and the overlapped image is transferred to the recording medium S. The transferred image is fused onto the recording medium S so that a color image is formed.
When a light signal corresponding to the image information on a cyan (C) color is scanned by the exposure unit 102 onto the photoreceptive drum 101 charged to a uniform electric potential, resistance of a portion of the drum surface where the light is scanned decreases and as a result charges adhering to the external circumferential surface of the photoreceptive drum 101 dissipate. As a result, a difference in electric potential is generated between the scanned portion and the non-scanned portion of the photoreceptive drum 101 so that an electrostatic latent image is formed on the outer circumferential surface of the photoreceptive drum 101. When the electrostatic latent image approaches the developing unit 103C for cyan (C) color as the photoreceptive drum 101 rotates, the toner for cyan (C) color contained in the developing unit 103C adheres to the electrostatic latent image so that a cyan toner image is formed. When the cyan toner image approaches the transfer belt 104 by the rotation of the transfer belt 104, the cyan toner image is transferred onto the transfer belt 104 by the difference in electric potential with the transfer belt 104 and/or a contact pressure. When the cyan toner image is completely transferred to the transfer belt 104, the toner images for magenta (M), yellow (Y), and black (K) are sequentially transferred to the transfer belt 104, in the same process, and overlapped thereon to form a color toner image. When the recording medium S passes between the transfer belt 104 and the transfer roller 105, the color toner image is transferred to the recording medium S. Next, the color toner image is fused by the fusing unit 106 onto the recording medium S by heat and pressure and the recording medium S is ejected completing the image forming process.
The photoreceptive drum 101 and the transfer belt 104 are image holding bodies which temporarily hold a toner image before the toner image is transferred to the recording medium S. Some waste toner remains on the photoreceptive drum 101 and the transfer belt 104 in the process of transferring the toner image to the recording medium S via the photoreceptive drum 101 and the transfer belt 104. The waste toner remaining on the image holding bodies is preferably removed for the next printing. The removed waste toner is held in a waste toner storage container 200 and then disposed of. In some cases, some waste toner reenters the developing unit to be reused. However, for a color image forming apparatus, since different color toners are mixed, generally, the waste toner cannot be reused.
Referring to
Referring to
Referring to
The duct 310 includes first through third ducts 301, 302, and 303, in the presently described embodiment. The first duct 301 connects the cleaning unit 120 and the second duct 302. The third duct 303 preferably has a flexible circular pipe shape which connects the second duct 302 and the waste toner storage container 200. Thus, a waste toner transfer route is formed from the cleaning unit 120 to the waste toner storage container 200, via the first duct 301, the second duct 302, and the third duct 303.
The transfer unit 350 is installed in the second duct 302 and the third duct 303. The transfer unit 350 may include a shaft 321 installed in the second duct 302 and a conveying coil 340 coupled to an end portion of the shaft 321 and extending to the third duct 303. That is, as shown in
To improve waste toner transfer performance, as shown in
The sectional shape of the conveying coil 340 is preferably circular. Alternatively, the sectional shape of the conveying coil 340 may be rectangular as shown in
Referring to
Although an additional driving unit (not shown) for moving the agitation member 410 can be provided, in the present embodiment, the agitation member 410 is moved by being engaged with the transfer unit 350. Referring to
The first duct 301 may be installed so that the waste toner freely falls from the cleaning unit 120 into the second duct 302. Alternatively, as shown in
The operation and effect of the waste toner transfer apparatus 300 is described below with reference to
The waste toner removed from the photoreceptive drum 101 by the cleaning apparatus 120 enters the second duct 302 via the first duct 301. When the drive motor 360 rotates, the auger 320 in the second duct 302 rotates and the conveying coil 340 in the third duct 303 rotates together. The waste toner in the second duct 302 enters in the third duct 303 by being pushed by the spiral wing 322 of the auger 320 and is transferred to the waste toner storage container 200 along the conveying coil 340.
The waste toner leaving the third duct 303 falls on the inclined guide portion 400 and slides into the waste toner storage container 200 by gravity. In this case, part of the waste toner falling on the guide portion 400 does not enter the waste toner storage container 200 due to an attraction force between the toner particles and tends accumulate on the guide portion 400. Accordingly, the guide portion 400 may clog in time. To prevent this, in the waste toner transfer apparatus 300 according to an embodiment of the present invention, the agitation member 410 is installed on the guide portion 400. As the conveying coil 340 rotates, the agitation member 410 contacting the cam member 420 moves to stir the waste toner accumulated on the guide portion 400. Thus, the waste toner falling on the guide portion 400 enters the storage container 200.
As described above, in the electrophotographic printer according to the embodiments of the present invention, since the agitation member is provided, the waste toner effectively enters the waste toner storage container by gravity and the movement of the agitation member, without being accumulated on the guide portion.
While this invention has been particularly shown and described with reference to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0045388 | Jul 2003 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4958196 | Fujii et al. | Sep 1990 | A |
5113227 | Miyasaka | May 1992 | A |
5130756 | Taniyama | Jul 1992 | A |
5204720 | Ishida et al. | Apr 1993 | A |
5534988 | Gerbasi | Jul 1996 | A |
6014541 | Kato et al. | Jan 2000 | A |
6085062 | Mizuishi et al. | Jul 2000 | A |
6266511 | Murakami et al. | Jul 2001 | B1 |
Number | Date | Country |
---|---|---|
05-319539 | Dec 1993 | JP |
09325662 | Dec 1997 | JP |
11-084971 | Mar 1999 | JP |
2001350382 | Dec 2001 | JP |
1988-0012982 | Aug 1988 | KR |
89-5387 | Apr 1989 | KR |
1991-0020519 | Dec 1991 | KR |
94-16977 | Jul 1994 | KR |
0125954 | Dec 1998 | KR |
1999-029393 | Apr 1999 | KR |
Number | Date | Country | |
---|---|---|---|
20050002707 A1 | Jan 2005 | US |