This application is a National Stage of International Application No. PCT/CN2017/081608, filed on Apr. 24, 2017, which claims priority to Chinese Patent Application No. 201710245369.2, filed on Apr. 14, 2017. Both of the aforementioned applications are hereby incorporated by reference in their entireties.
This application relates to a watch clasp, and in particular, to a watch clasp capable of finely adjusting a watch strap length.
Currently, a watch is adapted to a wrist size of a wearer by adjusting a length of a watch strap. However, the wrist size of the wearer changes with an environment. For example, the wrist size increases after the wearer plays sports. Therefore, the length of the watch needs to be adjusted at any time to keep the wrist comfortable whenever and wherever possible. A length of a steel watch strap is usually adjusted by increasing or reducing a quantity of balls of the watch strap, and both the increase and reduction of the quantity of the balls of the watch strap require a special-purpose tool to adjust tightness of wearing of the watch strap.
At present, a special-purpose tool used for separating a watch strap needs to be used when lengths of watch straps of most steel watch straps are adjusted by increasing or reducing quantities of ball of the watch straps. This is inconvenient for adjusting a watch strap length and wearing tightness during sports time whenever and wherever possible. In addition, a ball of a common steel watch strap has a relatively large width, that is, at least 3 mm, making it impossible to reach much smaller millimeter-level length fine adjustment by adjusting the length of the watch strap by changing a quantity of balls of the watch strap.
Methods in an existing solution of adjusting lengths of watch straps are all performing adjustment by increasing or reducing quantities of balls of the watch straps. It is very inconvenient to use the methods, and millimeter-level fine adjustment of a watch strap length cannot be implemented conveniently whenever and wherever possible without using any tool.
Embodiments of this application provide a watch clasp capable of finely adjusting a watch strap length, to conveniently implement millimeter-level fine adjustment of a length of a watch strap whenever and wherever possible without using any tool to increase or reduce the length of the watch strap, thereby adjusting tightness of wearing of the watch strap whenever and wherever possible.
A first aspect of the embodiments of this application provides a watch clasp capable of finely adjusting a watch strap length, including: a watch clasp sliding holder 102, located on a back surface of a watch clasp case 101; a sliding stop module 104, fixing the watch clasp sliding holder 102 to the back surface of the watch clasp case 101 through engagement, where the sliding holder 102 can slide between the watch clasp case 101 and the sliding stop module 104; a stop spring bar 103, fixed to the watch clasp case 101, and an unlock module 105, fixed to the watch clasp case 101, where the unlock module 105 is engaged with the sliding stop module 104, and the stop spring bar 103 and the unlock module 105 are respectively located on two sides of the sliding stop module 104; and an extension latch assembly, where one end of the extension latch assembly 106 is fixed to the watch clasp case 101, and the other end of the extension latch assembly 106 is fixed to an elastic fine-adjusting assembly 107. The embodiments of this application provide a watch clasp capable of finely adjusting a watch strap length, to implement millimeter-level fine adjustment of a length of a watch strap whenever and wherever possible to increase or reduce the length of the watch strap, thereby adjusting tightness of wearing of the watch strap.
In a possible design, in a first implementation of the first aspect of the embodiments of this application, the elastic fine-adjusting assembly 107 includes: a supporter 108, a slider 109, a spring bar shaft 110, a drive block 111, a fixing spring bar 112, and a leaf spring 113. The leaf spring 113 is embedded into a connection port reserved on the drive block 111. The fixing spring bar 112 fixes the drive block 111 to the supporter 108. The fixing spring bar 112 fixes the slider 109 to the supporter 108. The spring bar shaft 110 is fixed to the slider 109. The spring bar shaft 110 is configured to connect to a watch strap. The embodiments of this application describe in detail the elastic fine-adjusting assembly, thereby increasing reliability and integrity of the embodiments of this application.
In a possible design, in a second implementation of the first aspect of the embodiments of this application, including: the sliding stop module 104 is engaged with the unlock module 105. By pressing two ends of the unlock module 105, a spring in the unlock module 105 drives a main toggle arm 114, and the main toggle arm 114 drives an auxiliary toggle arm 115 that is of the sliding stop module 104 and that is flexibly connected to the main toggle arm 114, so that two fixing poles 116 of the sliding stop module 104 move towards each other, to unlock the watch clasp sliding holder 102. The embodiments of this application describe in detail a connection manner of the sliding stop module and the unlock module, thereby increasing reliability and integrity of the embodiments of this application.
In a possible design, in a third implementation of the first aspect of the embodiments of this application, including: the stop spring bar 103 is fixed, by using an elastic device, to a fixing hole 1011 disposed on the watch clasp case 101. A size of the fixing hole 1011 is the same as a size of the elastic device. The stop spring bar 103 can adjust a length of the stop spring bar 103 by using the elastic device. The embodiments of this application describe in detail a fixing manner of the stop spring bar, thereby increasing reliability and integrity of the embodiments of this application.
In a possible design, in a fourth implementation of the first aspect of the embodiments of this application, including: the fixing spring bar 112 fixes the drive block 111 and the leaf spring 113 to the supporter 108. The slider 109 is flexibly connected to the supporter 108. The fixing spring bar 112, the drive block 111, and the leaf spring 113 are all located within a coverage range of the slider 109. The slider 109 can slide along a groove reserved on the supporter 108 the supporter. The slider 109 can adjust a sliding position by using the leaf spring 113. The embodiments of this application describe in detail a connection relationship between the components in the elastic fine-adjusting assembly, thereby increasing operability of the embodiments of this application.
In a possible design, in a fifth implementation of the first aspect of the embodiments of this application, including: the sliding stop module 104 is engaged with the watch clasp sliding holder 102. A fixing module of the sliding stop module 104 is provided with a notch 117. A position at which the watch clasp sliding holder 102 is engaged with the sliding stop module 104 is provided with a corresponding notch 117. The notch 117 is used to remove the connected sliding stop module 104. The embodiments of this application describe in detail a specific connection relationship between the sliding stop module and the watch clasp sliding holder, thereby making the embodiments of this application more complete.
In a possible design, in a sixth implementation of the first aspect of the embodiments of this application, including: the notch 117 is semicircular. The embodiments of this application limit the shape of the notch disposed on the watch clasp sliding holder, thereby increasing operability of the embodiments of this application.
In a possible design, in a seventh implementation of the first aspect of the embodiments of this application, the sliding stop module 104 includes an auxiliary toggle arm 115, a spring 118, and a sliding stop module enclosure 119. The auxiliary toggle arm 115 resets by using the spring 118. The fixing pole 116 is a part of the auxiliary toggle arm 115. The embodiments of this application describe in detail a specific structure of the components of the sliding stop module, thereby increasing operability of the embodiments of this application.
In a possible design, in an eighth implementation of the first aspect of the embodiments of this application, including: the fixing pole 116 and the auxiliary toggle arm 115 are detachably connected. The embodiments of this application limit a connection relationship between the fixing pole and the auxiliary toggle arm, thereby increasing operability of the embodiments of this application.
In a possible design, in a ninth implementation of the first aspect of the embodiments of this application, including: the unlock module 105 includes a main toggle arm 114, a spring 120, and an unlock module enclosure 121. The main toggle arm 114 resets by using the spring 120. The embodiments of this application describe in detail a specific structure of the components of the unlock module, thereby increasing operability of the embodiments of this application.
In a possible design, in a tenth implementation of the first aspect of the embodiments of this application, including: the extension latch assembly 106 includes a first extension fastening component 1061, a second extension fastening component 1062, and a fixing spring bar shaft 1063. A size of one end of the first extension fastening component 1061 is the same as a size of a groove reserved at one end of the second extension fastening component 1062, and the one end of the first extension fastening component 1061 and the one end of the second extension fastening component 1062 are connected by using a rotating shaft. The other end of the first extension fastening component 1061 is connected to an elastic fine-adjusting assembly 107. The other end of the second extension fastening component 1062 is connected to the watch clasp case 101. Rotation between the first extension fastening component 1061 and the second extension fastening component 1062 can form any angle. The fixing spring bar shaft 1063 is configured to fix the second extension fastening component 1062 to the watch clasp case 101. The embodiments of this application describe in detail a specific structure of the components of the extension latch assembly, thereby increasing operability of the embodiments of this application.
A second aspect of the embodiments of this application provides a watch strap, including the watch clasp according to any one of the first aspect or the first to the tenth implementation of the first aspect according to this application. The embodiments of this application provide the watch strap including the watch clasp, thereby increasing reliability of the embodiments of this application.
A third aspect of the embodiments of this application provides a watch, including the watch clasp according to any one of the first aspect or the first to the tenth implementation of the first aspect according to this application that is connected to a watch strap. The embodiments of this application provide the watch including the watch clasp, thereby increasing reliability of the embodiments of this application.
In the technical solution provided in the embodiments of this application, a watch clasp capable of finely adjusting a watch strap length is provided. The watch clasp capable of finely adjusting a watch strap length includes: a watch clasp sliding holder 102, located on a back surface of a watch clasp case 101; a sliding stop module 104, fixing the watch clasp sliding holder 102 to the back surface of the watch clasp case 101 through engagement, where the sliding holder 102 can slide between the watch clasp case 101 and the sliding stop module 104; a stop spring bar 103, fixed to the watch clasp case 101, and an unlock module 105, fixed to the watch clasp case 101, where the unlock module 105 is engaged with the sliding stop module 104, and the stop spring bar 103 and the unlock module 105 are respectively located on two sides of the sliding stop module 104; and an extension latch assembly, where one end of the extension latch assembly 106 is fixed to the watch clasp case 101, and the other end of the extension latch assembly 106 is fixed to an elastic fine-adjusting assembly 107. The embodiments of this application provide the watch clasp capable of finely adjusting a watch strap length, to conveniently implement millimeter-level fine adjustment of a length of a watch strap whenever and wherever possible without using any tool to increase or reduce the length of the watch strap, thereby adjusting tightness of wearing of the watch strap whenever and wherever possible.
Embodiments of this application provide a watch clasp capable of finely adjusting a watch strap length, to conveniently implement millimeter-level fine adjustment of a length of a watch strap whenever and wherever possible without using any tool to increase or reduce the length of the watch strap, thereby adjusting tightness of wearing of the watch strap whenever and wherever possible.
To make persons skilled in the art understand the solutions in this application better, the following describes the embodiments of this application with reference to the accompanying drawings in the embodiments of this application.
In the specification, claims, and accompanying drawings of this application, the terms “first”, “second”, “third”, “fourth”, and so on (if existent) are intended to distinguish between similar objects but do not necessarily indicate a specific order or sequence. It should be understood that the data termed in such a way are interchangeable in proper circumstances so that the embodiments of the present invention described herein can be implemented in other orders than the order illustrated or described herein. Moreover, the terms “include”, “have” and any other variants mean to cover the non-exclusive inclusion, for example, a process, method, system, product, or device that includes a list of steps or units is not necessarily limited to those steps or units, but may include other steps or units not expressly listed or inherent to such a process, method, product, or device.
As shown in
The watch clasp sliding holder 102 is located on a back surface of the watch clasp case 101.
The sliding stop module 104 fixes the watch clasp sliding holder 102 to the back surface of the watch clasp case 101 through engagement. The sliding holder 102 can slide between the watch clasp case 101 and the sliding stop module 104.
The stop spring bar 103 is fixed to the watch clasp case 101. The unlock module 105 is fixed to the watch clasp case 101, and the unlock module 105 is engaged with the sliding stop module 104. The stop spring bar 103 and the unlock module 105 are respectively located on two sides of the sliding stop module 104.
One end of the extension latch assembly 106 is fixed to the watch clasp case 101, and the other end of the extension latch assembly 106 is fixed to the elastic fine-adjusting assembly 107.
For example, the watch clasp case 101 is provided with fixing holes, used to fix another component of the watch clasp. As shown in
It can be understood that, the size, the shape and the depth of the fixing hole can be set based on an actual case. This is not specifically limited herein.
As shown in
As shown in
For example, the fixing spring bar 112 fixes the drive block 111 and the leaf spring 113 to the supporter 108. The slider 109 is flexibly connected to the supporter 108, and the slider 109 slides in the groove disposed on the supporter 108. The fixing spring bar 112, the drive block 111, and the leaf spring 113 are all located within a coverage range of the slider 109. The slider 109 may slide along the groove reserved in the supporter 108 the supporter, and the slider 109 can adjust a sliding position by using the leaf spring 113.
As shown in
As shown in
Optionally, the sawtooth shape groove structure of the watch clasp sliding holder 102 is divided into five adjustable levels, and an adjustable length of each level is 2.08 millimeters. A quantity of the adjustable levels and the adjustable length of each adjustable level may further be set based on an actual case. A specific length is not limited herein.
As shown in
Optionally, the stop spring bar 103 is fixed, by using an elastic device, to the fixing hole 1011 disposed on the watch clasp case 101. The size of the fixing hole 1011 and a size of the elastic device are the same. The stop spring bar 103 can adjust a length of the stop spring bar 103 by using the elastic device. It can be understood that, a diameter size of the elastic device of the stop spring bar 103 is the same as a diameter size of the fixing hole 1011, so that the stop spring bar 103 can be firmly fixed to the watch clasp case 101.
It should be noted that, the sliding stop module 104 is engaged with the watch clasp sliding holder 102, a fixing module of the sliding stop module 104 is provided with a notch 117, and a position at which the watch clasp sliding holder 102 is engaged with the sliding stop module 104 is provided with a corresponding notch 117. The notch 117 is used to remove the sliding stop module 104 that is already engaged with the watch clasp case 101. Optionally, the notch 117 is semicircular, or may be further in another shape. This is not specifically limited herein.
Optionally, the sliding stop module 104 includes an auxiliary toggle arm 115, a spring 118, and a sliding stop module enclosure 119. As shown in
Optionally, the unlock module 105 includes a main toggle arm 114, a spring 120, and an unlock module enclosure 121. The main toggle arm 114 resets by using the spring 120.
Optionally, the fixing pole 116 and the auxiliary toggle arm 115 are detachably connected. A specific detachable connection manner may be threaded connection or engagement, or may further be another detachable connection manner. This is not specifically limited herein.
For example,
Optionally, the extension latch assembly 106 includes a first extension fastening component 1061, a second extension fastening component 1062, and a fixing spring bar shaft 1063. A size of one end of the first extension fastening component 1061 is the same as a size of a groove reserved at one end of the second extension fastening component 1062, and the one end of the first extension fastening component 1061 and the one end of the second extension fastening component 1062 are connected by using a rotating shaft The other end of the first extension fastening component 1061 is connected to an elastic fine-adjusting assembly 107, the other end of the second extension fastening component 1062 is connected to a watch clasp case 101, and rotation between the first extension fastening component 1061 and the second extension fastening component 1062 can form any angle. The fixing spring bar shaft 1063 is configured to fix the second extension fastening component 1062 to the watch clasp case 101.
For example, with reference to
The foregoing embodiments are merely intended for describing the technical solutions of this application, but not for limiting this application. Although this application is described in detail with reference to the foregoing embodiments, persons of ordinary skill in the art should understand that they may still make modifications to the technical solutions described in the foregoing embodiments or make equivalent replacements to some technical features thereof, without departing from the spirit and scope of the technical solutions of the embodiments of this application.
Number | Date | Country | Kind |
---|---|---|---|
201710245369.2 | Apr 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/081608 | 4/24/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/188112 | 10/18/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2461309 | Cedar | Feb 1949 | A |
4096688 | Rieth | Jun 1978 | A |
5749128 | Cuche | May 1998 | A |
6108821 | Malsoute | Aug 2000 | A |
7797801 | Takahashi | Sep 2010 | B2 |
20040083581 | Kawagoe | May 2004 | A1 |
20070271740 | Yamamoto | Nov 2007 | A1 |
20080083101 | Christian | Apr 2008 | A1 |
20090049667 | Takahashi | Feb 2009 | A1 |
20120312052 | Yliluoma et al. | Dec 2012 | A1 |
20140150223 | Kaltenrieder | Jun 2014 | A1 |
20150366303 | Pier | Dec 2015 | A1 |
20190183213 | Viller | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
706904 | Mar 2014 | CH |
1168252 | Dec 1997 | CN |
101077241 | Nov 2007 | CN |
103222711 | Jul 2013 | CN |
204812406 | Dec 2015 | CN |
102005005834 | Aug 2006 | DE |
1378185 | Jan 2004 | EP |
Entry |
---|
Extended (Supplementary) European Search Report dated May 12, 2020, issued in counterpart EP Application No. 17905897.9. (6 pages). |
Office Action dated Mar. 28, 2019, issued in counterpart CN Application No. 201780008215.X, with English translation. (11 pages). |
Office Action dated Jul. 3, 2019, issued in counterpart CN Application No. 201780008215.X, with English translation. (6 pages). |
International Search Report and Written Opinion dated Jan. 11, 2018, issued in counterpart Application No. PCT/CN2017/081608, with English translation. (17 pages). |
Number | Date | Country | |
---|---|---|---|
20200113295 A1 | Apr 2020 | US |