WATER ABSORBENT RESIN PARTICLES AND ABSORBENT ARTICLE

Abstract
Water-absorbing resin particles, in which a value of non-pressurization DW after 30 seconds is 1.0 mL/g or more, and a contact angle measured in a test performed in the order of i) and ii) below is 90 degrees or smaller, are disclosed. i) A spherical liquid droplet, which corresponds to a diameter of 3.0±0.1 min, of a 25% by mass saline solution is added dropwise at 25° C. onto a surface of a layer formed from the water-absorbing resin particles to bring the water-absorbing resin particles into contact with the liquid droplet. ii) A contact angle of the liquid droplet is measured at a timing which is 30 seconds after the liquid droplet is brought into contact with the surface.
Description
TECHNICAL FIELD

The present invention relates to water-absorbing resin particles and an absorbent article.


BACKGROUND ART

Conventionally, an absorbent containing water-absorbing resin particles has been used in an absorbent article for absorbing a liquid containing water such as urine as a main component. For example, Patent Literature 1 below discloses a method for producing water-absorbing resin particles having a particle size that enables them to be suitably used for an absorbent article such as a diaper, and Patent Literature 2 below discloses a method of using a hydrogel-absorbent polymer having flow inducibility for a specific saline solution, performance under pressure, and the like as an effective absorbent member for accommodating various body fluids such as urine.


CITATION LIST
Patent Literature

[Patent Literature 1] Japanese Unexamined Patent Publication No. H6-345819


[Patent Literature 2] Published Japanese Translation No. H9-510889 of the PCT International Publication


SUMMARY OF INVENTION
Technical Problem

An absorbent used for absorbent articles is generally required to absorb various liquids (urine, sweat, and the like) containing metal ions. In a case where a liquid provided to the absorbent does not sufficiently permeate the absorbent, there may be a problem of the excess liquid flowing on a surface of the absorbent, resulting in its leakage to the outside of the absorbent. Therefore, it is necessary for a liquid containing metal ions to permeate the absorbent at a sufficient speed, and it is required that a suitable permeation speed be stably obtained regardless of the type of liquid.


An absorbent article formed from a conventional absorbent has room for improvement in leakage properties in which because an absorption target liquid is not sufficiently absorbed by the absorbent, a phenomenon (liquid running) in which the excess liquid flows on a surface of the absorbent is likely to occur, and as a result, the liquid leaks to the outside of the absorbent article.


An object of one aspect of the present invention is to provide water-absorbing resin particles capable of inhibiting liquid leakage. An object of another aspect of the present invention is to provide an absorbent article in which liquid leakage is inhibited.


Solution to Problem

One aspect of the present invention is to provide water-absorbing resin particles in which a value of non-pressurization DW after 30 seconds is 1.0 mL/g or more, and a contact angle measured in a test performed in the order of i) and ii) below is 90 degrees or smaller.


i) A spherical liquid droplet, which corresponds to a diameter of 3.0±0.1 mm, of a 25% by mass saline solution is added dropwise at 25° C. onto a surface of a layer formed from the water-absorbing resin particles to bring the water-absorbing resin particles into contact with the liquid droplet.


ii) A contact angle of the liquid droplet is measured at a timing which is 30 seconds after the liquid droplet is brought into contact with the surface.


Since the value of non-pressurization DW after 30 seconds and the contact angle are within predetermined ranges in the water-absorbing resin particles, they can inhibit liquid leakage. That is, the water-absorbing resin particles can effectively contribute to inhibiting occurrence of liquid leakage from an absorbent article. The non-pressurization DW is a water absorption speed represented by an amount of a physiological saline solution (a saline solution having a concentration of 0.9% by mass) absorbed by the water-absorbing resin particles under no pressurization until the elapse of a predetermined time after the water-absorbing resin particles are brought into contact with the physiological saline solution. The non-pressurization DW is represented by an amount of absorption (mL) per 1 g of the water-absorbing resin particles before absorbing a physiological saline solution. The value of non-pressurization DW after 30 seconds means an amount of absorption 30 seconds after the water-absorbing resin particles are brought into contact with a physiological saline solution.


In the water-absorbing resin particles, the contact angle may be 70 degrees or smaller.


In the water-absorbing resin particles, a water retention capacity for a physiological saline solution may be 20 to 60 g/g.


Another aspect of the present invention provides an absorbent article including a liquid-impermeable sheet, an absorbent, and a liquid-permeable sheet. The liquid-impermeable sheet, the absorbent, and the liquid-permeable sheet are disposed in this order. The absorbent contains water-absorbing resin particles, in which a value of non-pressurization DW after 30 seconds of the water-absorbing resin particles is 1.0 mL/g or more, and a contact angle of the water-absorbing resin particles which is measured in a test performed in the order of i) and ii) below is 90 degrees or smaller.


i) A spherical liquid droplet, which corresponds to a diameter of 3.0±0.1 mm, of a 25% by mass saline solution is added dropwise at 25° C. onto a surface of a layer formed from the water-absorbing resin particles to bring the water-absorbing resin particles into contact with the liquid droplet.


ii) A contact angle of the liquid droplet is measured at a timing which is 30 seconds after the liquid droplet is brought into contact with the surface.


The contact angle of the water-absorbing resin particles may be 70 degrees or smaller.


The liquid-permeable sheet may include thermal bonded non-woven fabrics, air through non-woven fabrics, resin bonded non-woven fabrics, spunbond non-woven fabrics, melt-blown non-woven fabrics, airlaid non-woven fabrics, spunlace non-woven fabrics, point-bonded non-woven fabrics, or a laminate of two or more of non-woven fabrics selected from these non-woven fabrics.


The absorbent may further contain a fibrous material. The absorbent article may further include a core wrap that covers at least a surface side of the absorbent in contact with the liquid-permeable sheet. The absorbent may be adhered to the liquid-permeable sheet. A water retention capacity of the water-absorbing resin particles for a physiological saline solution may be 30 to 55 g/g.


Advantageous Effects of Invention

According to the one aspect of the present invention, it is possible to provide water-absorbing resin particles capable of inhibiting liquid leakage. According to the other aspect of the present invention, it is possible to provide an absorbent article in which liquid leakage is inhibited.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a cross-sectional view showing an example of an absorbent article.



FIG. 2 is a schematic view showing a measuring device for a value of non-pressurization DW after 30 seconds.



FIG. 3 is a schematic view showing a measuring device for a water absorption capacity of water-absorbing resin particles under a load.



FIG. 4 is a schematic view showing a method for evaluating liquid leakage properties of an absorbent article.





DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. However, the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof. In the following description, a positional relationship such as low, left, and right is based on a positional relationship shown in the drawings unless otherwise specified. Furthermore, dimensional ratios in the drawings are not limited to the shown ratios.


In the present specification, “acrylic” and “methacrylic” are collectively referred to as “(meth)acrylic.” “Acrylate” and “methacrylate” are also referred to as “(meth)acrylate.” Regarding numerical value ranges described in a stepwise manner in the present specification, an upper limit value or a lower limit value of a numerical value range in a certain step can be arbitrarily combined with an upper limit value or a lower limit value of a numerical value range in another step. In a numerical value range described in the present specification, an upper limit value or a lower limit value of the numerical value range may be replaced with a value shown in examples. It is sufficient for the expression “A or B” to include any one of A and B, and it may include both of them. The term “water-soluble” means that a solubility of 5% by mass or more is exhibited in water at 25° C. For materials exemplified in the present specification, one kind may be used alone, or two or more kinds may be used in combination. In a case where there are a plurality of substances corresponding to each of components in a composition, a content of each of the components in the composition means a total amount of the plurality of substances present in the composition unless otherwise specified.


A value of non-pressurization DW after 30 seconds of water-absorbing resin particles according to the present embodiment is 1.0 mL/g or more. From the viewpoint of further inhibiting liquid leakage, a value of non-pressurization DW after 30 seconds may be 2.0 mL/g or more, 3.0 m/g or more, 4.0 mL/g or more, 5.0 mL/g or more, 6.0 mL/g or more, 7.0 mL/g or more, 8.0 mL/g or more, 9.0 mL/g or more, or 9.5 mL/g or more, and it may be 15 mL/g or less, 12 mL/g or less, or 10 mL/g or less. A value of non-pressurization DW after 30 seconds may be 1.0 mL/g or more and 15 mL/g or less, 2.0 mL/g or more and 15 mL/g or less, 3.0 mL/g or more and 15 mL/g or less, 3.0 mL/g or more and 12 mL/g or less, 4.0 mL/g or more and 12 mL/g or less, 5.0 mL/g or more and 12 mL/g or less, 6.0 mL/g or more and 12 mL/g or less, or 7.0 mL/g or more and 10 mL/g or less, from the viewpoint that liquid leakage can be then further inhibited.


The value of non-pressurization DW after 30 seconds is a value measured by a measurement method described in Examples to be described later.


A contact angle of the water-absorbing resin particles according to the present embodiment which is measured in a test performed in the order of i) and ii) below is 90 degrees or smaller.


i) A spherical liquid droplet, which corresponds to a diameter of 3.0±0.1 mm, of a 25% by mass saline solution is added dropwise at 25° C. onto a surface of a layer formed from the water-absorbing resin particles to bring the water-absorbing resin particles into contact with the liquid droplet.


ii) A contact angle of the liquid droplet is measured at a timing which is 30 seconds after the liquid droplet is brought into contact with the surface.


A contact angle may be 80 degrees or smaller, 75 degrees or smaller, 70 degrees or smaller, 65 degrees or smaller, 60 degrees or smaller, 55 degrees or smaller, 50 degrees or smaller, 45 degrees or smaller, 40 degrees or smaller, or 35 degrees or smaller, from the viewpoint that liquid leakage can be then further inhibited. Furthermore, a contact angle may be 0 degrees or larger, larger than 0 degrees, 10 degrees or larger, 20 degrees or larger, 25 degrees or larger, or 28 degrees or larger. A contact angle may be larger than 0 degrees and equal to or smaller than 80 degrees, 10 degrees or larger and 70 degrees or smaller, 20 degrees or larger and 70 degrees or smaller, or 25 degrees or larger and 65 degrees or smaller, from the viewpoint that liquid leakage can be then further inhibited.


The contact angle is a value measured according to “Testing Method Of Wettability Of Glass Substrate Surface” in JIS R 3257 (1999). Specifically, it is measured by a method described in Examples to be described later.


The water-absorbing resin particles according to the present embodiment can have a high water absorption capacity with respect to a physiological saline solution. A water retention capacity of the water-absorbing resin particles according to the present embodiment for a physiological saline solution may be, for example, 20 g/g or more, 25 g/g or more, 27 g/g or more, 30 g/g or more, 32 g/g or more, 35 g/g or more, 37 g/g or more, 38 g/g or more, or 40 g/g or more, from the viewpoint of appropriately increasing an absorption capacity of an absorbent. A water retention capacity of the water-absorbing resin particles for a physiological saline solution may be 60 g/g or less, 57 g/g or less, 55 g/g or less, 52 g/g or less, 50 g/g or less, 47 g/g or less, 45 g/g or less, or 43 g/g or less. A water retention capacity for a physiological saline solution may be 20 to 60 g/g, 25 to 55 g/g, 30 to 55 g/g, 30 to 50 g/g, or 32 to 42 g/g. Furthermore, a water retention capacity for a physiological saline solution may be 30 to 60 g/g, 32 to 60 g/g, 35 to 60 g/g, 37 to 60 g/g, 38 to 55 g/g, 38 to 52 g/g, 40 to 52 g/g, or 40 to 50 g/g. The water retention capacity for a physiological saline solution is measured by a method described in Examples to be described later.


A water absorption capacity of the water-absorbing resin particles according to the present embodiment for a physiological saline solution under a load may he, for example, 10 to 40 mL/g, 15 to 35 mL/g, 20 to 30 mL,/g, or 22 to 28 mL/g. As the water absorption capacity for a physiological saline solution under a load, water absorption capacity (25° C.) at a load of 4.14 kPa can be used. The water absorption capacity can be measured by a method described in Examples to be described later.


Examples of shapes of the water-absorbing resin particles according to the present embodiment include a substantially spherical shape, a crushed shape, and a granular shape. A median particle size of the water-absorbing resin particles according to the present embodiment may be 250 to 850 μm, 300 to 700 μm, or 300 to 600 μm. The water-absorbing resin particles according to the present embodiment may have a desired particle size distribution at a timing obtained in a production method to be described later, but their particle size distribution may be adjusted by performing operations such as adjustment of a particle size through classification with a sieve.


The water-absorbing resin particles according to the present embodiment can contain, for example, a crosslinked polymer formed by polymerization of monomers including ethylenically unsaturated monomers. The crosslinked polymer has a monomer unit derived from ethylenically unsaturated monomer. Examples of crosslinked polymers include a hydrolysate of a starch-acrylonitrile graft copolymer, a neutralized product of a starch-acrylic acid graft polymer, a saponified product of a vinyl acetate-acrylic acid ester copolymer, and a partially neutralized polyacrylic acid. Among these crosslinked polymers, the crosslinked polymer may be a partially neutralized polyacrylic acid from the viewpoint of a production amount, manufacturing cost, a water absorption performance, and the like.


The water-absorbing resin particles can be produced by a method including a step of polymerizing monomers including ethylenically unsaturated monomers. Examples of methods of polymerization include a reverse-phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. Among them, the polymerization method may be the reverse-phase suspension polymerization method or the aqueous solution polymerization method from the viewpoints of facilitating securement of favorable water absorption characteristics of the obtained water-absorbing resin particles and control of a polymerization reaction. Hereinbelow; a method for polymerizing ethylenically unsaturated monomers will be described with the reverse-phase suspension polymerization method as an example.


An ethylenically unsaturated monomer may be water-soluble. Examples thereof include (meth)acrylic acid and a salt thereof, 2-(meth)acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth)acrylamide, N,N-dimethyl (meth)acrylamide, 2-hydroxyethyl (meth)acrylate, N-methylol (meth)acrylamide, polyethylene glycol mono(meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate, and diethylaminopropyl (meth)acrylamide. In a case where an ethylenically unsaturated monomer has an amino group, the amino group may be quaternarized. The ethylenically unsaturated monomer may be used alone or in a combination of two or more kinds thereof. A functional group, such as a carboxyl group and an amino group, of the monomer, may function as a crosslinkable functional group in a surface crosslinking process to be described later.


Among them, from the viewpoint of high industrial availability, the ethylenically unsaturated monomer may include at least one compound selected from the group consisting of (meth)acrylic acid and a salt thereof, acrylamide, methacrylamide, and N,N-dimethyl acrylamide, or may include at least one compound selected from the group consisting of (meth)acrylic acid and a salt thereof and acrylamide. The ethylenically unsaturated monomer may include at least one compound selected from the group consisting of (meth)acrylic acid and a salt thereof from the viewpoint of further enhancing water absorption characteristics.


The ethylenically unsaturated monomer may be used in a form of an aqueous solution. A concentration of the ethylenically unsaturated monomers in an aqueous solution containing the ethylenically unsaturated monomers (hereinafter, simply referred to as an “aqueous solution of monomers”) may be 20% by mass or more and a saturated concentration or less, may be 25% to 70% by mass, or may be 30% to 55% by mass. Examples of water to be used an aqueous solution include tap water, distilled water, and ion exchange water.


For the monomer for obtaining the water-absorbing resin particles, a monomer other than the above-described ethylenically unsaturated monomers may be used. Such a monomer can be used by, for example, being mixed with an aqueous solution containing the above-described ethylenically unsaturated monomers. A usage amount of the ethylenically unsaturated monomers may be 70 to 100 mol %, may be 80 to 100 mol %, may be 90 to 100 mol %, may be 95 to 100 mol %, or may be 100 mol %, with respect to a total amount of monomers. Among them, a proportion of (meth)acrylic acid and a salt thereof may be 70 to 100 mol %, may be 80 to 100 mol %, may be 90 to 100 mol %, may be 95 to 100 mol %, or may be 100 mol %, with respect to a total amount of monomers.


In a case where ethylenically unsaturated monomers have an acidic group, an aqueous solution of monomers may be used after neutralizing this acidic group with an alkaline neutralizing agent. From the viewpoint of increasing an osmotic pressure of the obtained water-absorbing resin particles and thereby further enhancing water absorption characteristics (such as a water retention capacity), a degree of neutralization in the ethylenically unsaturated monomers by the alkaline neutralizing agent may be 10 to 100 mol %, may be 50 to 90 mol %, or may be 60 to 80 mol % of the acidic group in the ethylenically unsaturated monomers. Examples of alkaline neutralizing agents include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, and potassium carbonate; and ammonia. The alkaline neutralizing agent may be used alone or in combination of two or more kinds thereof. The alkaline neutralizing agent may be used in a form of an aqueous solution to simplify a neutralizing operation. Neutralization of the acidic groups in the ethylenically unsaturated monomers can be performed by, for example, adding an aqueous solution of sodium hydroxide, potassium hydroxide, or the like dropwise to the above-described aqueous solution of monomers and mixing them.


In the reverse-phase suspension polymerization method, an aqueous solution of monomers can be dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and polymerization of ethylenically unsaturated monomers can be performed using a radical polymerization initiator or the like. As the radical polymerization initiator, it is possible to use a water-soluble radical polymerization initiator.


Examples of surfactants include nonionic surfactants and anionic surfactants. Examples of nonionic surfactants include sorbitan fatty acid esters, (poly)glycerin fatty acid esters (where “(poly)” means both of a case with the prefix “poly” and a case without the prefix “poly,” and the same applies hereinbelow), sucrose fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitol fatty acid esters, polyoxyethylene sorbitol fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ethers, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropyl alkyl ethers, and polyethylene glycol fatty acid esters. Examples of anionic surfactants include fatty acid salts, alkylbenzene sulfonate, alkylmethyl taurate, polyoxyethylene alkylphenyl ether sulfuric acid ester salts, polyoxyethylene alkyl ether sulfonic acid salts, phosphoric acid esters of polyoxyethylene alkyl ethers, and phosphoric acid esters of polyoxyethylene alkyl allyl ethers. The surfactant may be used alone or in combination of two or more kinds thereof.


The surfactant may include at least one compound selected from the group consisting of sorbitan fatty acid esters, polyglycerin fatty acid esters, and sucrose fatty acid esters, from the viewpoints that then, a state of a W/O type reverse-phase suspension becomes favorable, water-absorbing resin particles having a suitable particle size are easily obtained, and industrial availability becomes high. The surfactant may include sucrose fatty acid esters or may include sucrose stearic acid esters from the viewpoint that water absorption characteristics of the obtained water-absorbing resin particles are then easily improved.


A usage amount of the surfactant may be 0.05 to 10 parts by mass, may be 0.08 to 5 parts by mass, or may be 0.1 to 3 parts by mass, with respect to 100 parts by mass of the aqueous solution of monomers, from the viewpoint that a sufficient effect is obtained within these usage amounts, and these amounts are economic.


In the reverse-phase suspension polymerization, a polymeric dispersant may be used in combination with the above-mentioned surfactant. Examples of polymeric dispersants include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, a maleic anhydride-modified ethylene-propylene copolymer, a maleic anhydride-modified EPDM (ethylene propylene diene terpolymer), maleic anhydride-modified polybutadiene, a maleic anhydride-ethylene copolymer, a maleic anhydride-propylene copolymer, a maleic anhydride-ethylene-propylene copolymer, a maleic anhydride-butadiene copolymer, polyethylene, polypropylene, an ethylene-propylene copolymer, oxidized polyethylene, oxidized polypropylene, an oxidized ethylene-propylene copolymer, an ethylene-acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose, and the like. The polymeric dispersant may be used alone or in combination of two or more kinds thereof. From the viewpoint of better dispersion stability of monomers, the polymeric dispersant may be at least one selected from the group consisting of maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, a maleic anhydride-modified ethylene-propylene copolymer, a maleic anhydride-ethylene copolymer, a maleic anhydride-propylene copolymer, a maleic anhydride-ethylene-propylene copolymer, polyethylene, polypropylene, an ethylene-propylene copolymer, oxidized polyethylene, oxidized polypropylene, and an oxidized ethylene-propylene copolymer.


A usage amount of the polymeric dispersant may be 0.05 to 10 parts by mass, may be 0.08 to 5 parts by mass, or may be 0.1 to 3 parts by mass, with respect to 100 parts by mass of the aqueous solution of monomers, from the viewpoint that a sufficient effect is obtained within these usage amounts, and these amounts are economic.


The hydrocarbon dispersion medium may include at least one compound selected from the group consisting of a chained aliphatic hydrocarbon having 6 to 8 carbon atoms and an alicyclic hydrocarbon having 6 to 8 carbon atoms. Examples of hydrocarbon dispersion media include chained aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, and trans-1,3-dimethylcyclopentane; and aromatic hydrocarbons such as benzene, toluene, and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more kinds thereof.


For the hydrocarbon dispersion medium, at least one selected from the group consisting of n-heptane and cyclohexane may be contained from the viewpoints of high industrial availability and stable qualities. Furthermore, from the same viewpoints, as a mixture of the hydrocarbon dispersion media, for example, a commercially available Exxsol Heptane (manufactured by ExxonMobil Chemical: containing n-heptane and 75% to 85% of hydrocarbons of isomers thereof) may be used.


A usage amount of the hydrocarbon dispersion medium may be 30 to 1,000 parts by mass, may be 40 to 500 parts by mass, or may be 50 to 300 parts by mass, with respect to 100 parts by mass of the aqueous solution of monomers, from the viewpoint that polymerization heat is then appropriately removed, and thereby a polymerization temperature is easily controlled. In a case where a usage amount of the hydrocarbon dispersion medium is 30 parts by mass or more, there is a tendency that it becomes easy to control a polymerization temperature. In a case where a usage amount of the hydrocarbon dispersion medium is 1,000 parts by mass or less, there is a tendency that productivity of polymerization is improved, which is economic.


A radical polymerization initiator may be water-soluble. Examples thereof include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, and hydrogen peroxide; and azo compounds such as 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2′-azobis[2-(N-phenylamidino)propane] dihydrochloride, 2,2′-azobis[2-(N-allylamidino)propane] dihydrochloride, 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, 2,2′-azobis{2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane} dihydrochloride, 2,2′-azobis{2-methyl-N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]propionamide}, 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], and 4,4′-azobis(4-cyanovaleric acid). The radical polymerization initiator may be used alone or in combination of two or more kinds thereof. The radical polymerization initiator may be at least one selected from the group consisting of potassium persulfate, ammonium persulfate, sodium persulfate, 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, and 2,2′-azobis{2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane} dihydrochloride.


A usage amount of the radical polymerization initiator may be 0.00005 to 0.01 moles with respect to 1 mole of the ethylenically unsaturated monomers. A case in which a usage amount of the radical polymerization initiator is 0.00005 moles or more is efficient, because then a polymerization reaction is not required to be performed for a long period of time. In a case where a usage amount of the radical polymerization initiator is 0.01 moles or less, it is easy to inhibit occurrence of a rapid polymerization reaction.


The radical polymerization initiator can also be used as a redox polymerization initiator when it is used in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.


In a polymerization reaction, an aqueous solution of monomers used for the polymerization may contain a chain transfer agent. Examples of chain transfer agents include hypophosphites, thiols, thiolic acids, secondary alcohols, and amines.


The aqueous solution of monomers used for the polymerization may contain a thickener to control a particle size of the water-absorbing resin particles. Examples of thickeners include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, and the like. In a case where stirring speeds in the polymerization are the same, a median particle size of particles to be obtained is likely to become large as a viscosity of the aqueous solution of monomers becomes high.


Crosslinking may occur by self-crosslinking upon the polymerization, but crosslinking may be carried out by further using an internal crosslinking agent. By using the internal crosslinking agent, it is easy to control water absorption characteristics of the water-absorbing resin particles. The internal crosslinking agent is generally added to a reaction solution in the polymerization reaction. Examples of internal crosslinking agents include di- or tri(meth)acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; unsaturated polyesters obtained by reacting the polyols with unsaturated acids (such as maleic acid and fumaric acid); bis(meth)acrylamides such as N,N′-methylenebis(meth)acrylamide; di- or tri(meth)acrylic acid esters obtained by reacting a polyepoxide with (meth)acrylic acid; carbamyl di(meth)acrylate esters obtained by reacting a polyisocyanate (such as tolylene diisocyanate and hexamethylene diisocyanate) with hydroxyethyl (meth)acrylate; compounds having two or more polymerizable unsaturated groups, such as allylated starch, allylated cellulose, diallyl phthalate, N, N′, N″-triallyl isocyanurate, and divinylbenzene; polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, (poly)propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether; haloepoxy compounds such as epichlorohydrin, epibromohydrin, and α-methyl epichlorohydrin; compounds having two or more reactive functional groups, such as isocyanate compounds (such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate); and the like. The internal crosslinking agent may be used alone or in combination of two or more kinds thereof. The internal crosslinking agent may be a polyglycidyl compound, may be a diglycidyl ether compound, or may be at least one selected from the group consisting of (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, and (poly)glycerin diglycidyl ether.


A usage amount of the internal crosslinking agent may be 0 mmol or more, 0.02 mmol or more, 0.03 mmol or more, 0.04 mmol or more, or 0.05 mmol or more, and may be 0.1 moles or less, per 1 mole of the ethylenically unsaturated monomer, from the viewpoints of inhibiting water-soluble properties by appropriately crosslinking the obtained polymer, and easily obtaining a sufficient water absorption capacity. In particular, in first-stage polymerization in multi-stage reverse phase suspension polymerization, when an amount of the internal crosslinking agent is 0.03 mmol or more per 1 mole of the ethylenically unsaturated monomer, it is easy to obtain water-absorbing resin particles having suitable water retention capacity and non-pressurization DW.


An aqueous phase containing an ethylenically unsaturated monomer, a radical polymerization initiator, and if necessary, an internal crosslinking agent, and the like; and an oil phase containing a hydrocarbon dispersant, and if necessary, a surfactant and a polymeric dispersant, and the like can be heated under stirring in a state where they are mixed to carry out reverse-phase suspension polymerization in a water-in-oil system.


When performing the reverse-phase suspension polymerization, an aqueous solution of monomers which contains ethylenically unsaturated monomers is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant (and if necessary, a polymeric dispersant). In this case, a timing of adding the surfactant, the polymeric dispersant, or the like before the start of the polymerization reaction may be either before or after the addition of the aqueous solution of monomers.


Among them, the polymerization may be carried out after dispersing the aqueous solution of monomers in the hydrocarbon dispersion medium in which the polymeric dispersant has been dispersed, and then further dispersing the surfactant in the hydrocarbon dispersion medium, from the viewpoint that an amount of the hydrocarbon dispersion medium remaining in the obtained water-absorbing resin particles can then be easily reduced.


The reverse-phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. The reverse-phase suspension polymerization may be carried out in two or three stages from the viewpoint of increasing productivity.


In a case where reverse-phase suspension polymerization is carried out in multiple stages of two or more stages, it is sufficient for stages after a second stage of reverse-phase suspension polymerization to be carried out in the same manner as in a first stage of reverse-phase suspension polymerization by adding ethylenically unsaturated monomers to a reaction mixture obtained in the first stage of polymerization reaction and mixing them, after performing the first stage of reverse-phase suspension polymerization. In reverse-phase suspension polymerization in each stage after the second stage, reverse-phase suspension polymerization may be carried out by adding, in addition to ethylenically unsaturated monomers, the above-mentioned. radical polymerization initiator and/or internal crosslinking agent within a range of molar ratios of the respective components to the ethylenically unsaturated monomers, based on an amount of ethylenically unsaturated monomers added during reverse-phase suspension polymerization in each stage after the second stage. If necessary, the internal crosslinking agent may be used in reverse-phase suspension polymerization in each stage after the second stage. In a case where the internal crosslinking agent is used, reverse-phase suspension polymerization may be carried out by adding the internal crosslinking agent within a range of molar ratios of the respective components to the ethylenically unsaturated monomers based on an amount of ethylenically unsaturated monomers provided in each stage.


A temperature for the polymerization reaction varies depending on radical polymerization initiators used, and it may be 20° C. to 150° C., or may be 40° C. to 120° C., from the viewpoint that the polymerization is then promptly performed, which shortens a polymerization time, and thereby economic efficiency increases, and that polymerization heat is then easily removed, and thereby the reaction is smoothly performed. A reaction time is generally 0.5 to 4 hours. Completion of the polymerization reaction can be confirmed from, for example, stop of temperature rising in the reaction system. Accordingly, a polymer of ethylenically unsaturated monomers is generally obtained in a state of a hydrous gel polymer.


After the polymerization, post-polymerization crosslinking may be carried out by adding a crosslinking agent to the obtained hydrous gel polymer and heating them. By performing the post-polymerization crosslinking, a degree of crosslinking of the hydrous gel polymer can be increased, and thereby water absorption characteristics of the water-absorbing resin particles can be further improved.


Examples of crosslinking agents for performing the post-polymerization crosslinking include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethyloipropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; compounds having two or more epoxy groups, such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, and (poly)glycerin diglycidyl ether; haloepoxy compounds such as epichlorohydrin, epibromohydrin, and α-methyl epichlorohydrin; compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylene carbonate; and hydroxyalkylamide compounds such as bis[N,N-di(β-hydroxyethyl)]adipamide. Among them, the crosslinking agent may be polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, (poly)propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether. These crosslinking agents may be used alone or in combination of two or more kinds thereof.


An amount of the crosslinking agent used in the post-polymerization crosslinking may be 0 to 0.03 moles, may be 0 to 0.01 moles, or may be 0.00001 to 0.005 moles in a molar ratio, per 1 mole of the ethylenically unsaturated monomer, from the viewpoint of exhibiting suitable water absorption characteristics by appropriately crosslinking the obtained hydrous gel polymer. By setting an amount of the crosslinking agent added to be within the above range, it is easy to obtain water-absorbing resin particles having suitable non-pressurization DW and contact angle.


It is sufficient for a timing for adding the post-polymerization crosslinking to be after polymerization of ethylenically unsaturated monomers used for the polymerization. In a case of multi-stage polymerization, the crosslinking agent may be added after the multi-stage polymerization. From the viewpoint of a water content (to be described later), the crosslinking agent for the post-polymerization crosslinking may be added within a region of [water content immediately after polymerization±3% by mass], in consideration of heat generation during and after polymerization, retention due to process delay, system opening when a crosslinking agent is added, and fluctuation in water content due to addition of water associated with addition of a crosslinking agent.


Subsequently, drying is performed to remove water from the obtained hydrous gel polymer. By drying, polymer particles containing the polymer of ethylenically unsaturated monomers are obtained. Examples of drying methods include a method (a) in which a hydrous gel polymer in a state of being dispersed in a hydrocarbon dispersion medium is subjected to azeotropic distillation by heating from the outside, and the hydrocarbon dispersion medium is refluxed to remove water; a method (b) in which a hydrous gel polymer is taken out by decantation and dried under reduced pressure; and a method (c) in which a hydrous gel polymer is separated by filtration with a filter and dried under reduced pressure. Among them, the method (a) may be generally used for its simplicity in a production process.


It is possible to adjust a particle size of the water-absorbing resin particles by adjusting a rotational speed of a stirrer during the polymerization reaction or by adding a flocculating agent to the system after the polymerization reaction or at an initial time of drying. A particle size of the obtained water-absorbing resin particle can be increased by adding the flocculating agent. As the flocculating agent, an inorganic flocculating agent can be used. Examples of inorganic flocculating agents (for example, powdery inorganic flocculating agents) include silica, zeolite, bentonite, aluminum oxide, talc, titanium dioxide, kaolin, clay, and hydrotalcite. The flocculating agent may be at least one selected from the group consisting of silica, aluminum oxide, talc, and kaolin from the viewpoint of a flocculation effect.


In the reverse-phase suspension polymerization, a method of adding the flocculating agent may be a method in which a flocculating agent is dispersed in a hydrocarbon dispersion medium of the same kind as that used in the polymerization, or water in advance, and then the mixture is mixed into a hydrocarbon dispersion medium containing a hydrous gel polymer under stirring.


An amount of the flocculating agent added may be 0.001 to 1 part by mass, may be 0.005 to 0.5 parts by mass, or may be 0.01 to 0.2 parts by mass, with respect to 100 parts by mass of ethylenically unsaturated monomers used in the polymerization. By setting an amount of the flocculating agent added to be within the above range, it is easy to obtain water-absorbing resin particles having a desired particle size distribution.


In the production of the water-absorbing resin particles, a surface portion of the hydrous gel polymer may be crosslinked surface-crosslinked) using a crosslinking agent in the drying process or any of subsequent processes. By performing surface crosslinking, it is easy to control water absorption characteristics of the water-absorbing resin particles. The surface crosslinking may be performed at a timing when the hydrous gel polymer has a specific water content. A timing of the surface crosslinking may be a time point at which a water content of the hydrous gel polymer is 5% to 50% by mass, may be a time point at which a water content thereof is 10% to 40% by mass, or may be a time point at which a water content thereof is 15% to 35% by mass. A water content (% by mass) of the hydrous gel polymer is calculated by the following formula.





Water content=[Ww/(Ww+Ws)]×100


Ww: An amount of water of a hydrous gel polymer obtained by adding an amount of water used, as desired, upon mixing a flocculating agent, a surface crosslinking agent, and the like to an amount obtained by subtracting an amount of water extracted to the outside of the system by the drying process from an amount of water contained in an aqueous solution of monomers before polymerization in the all polymerization processes.


Ws: A solid fraction calculated from an amount of materials introduced, such as ethylenically unsaturated monomers, a crosslinking agent, and an initiator, each of which constitutes the hydrous gel polymer.


Examples of crosslinking agents (surface crosslinking agents) for performing surface crosslinking include compounds having two or more reactive functional groups. Examples of crosslinking agents include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, and (poly)glycerol polyglycidyl ether; haloepoxy compounds such as epichlorohydrin, epibromohydrin, and α-methyl epichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxetane compounds such as 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, and 3-butyl-3-oxetane ethanol; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis[N,N-di(β-hydroxyethyl)]adipamide; and the like. The crosslinking agent may be used alone or in combination of two or more kinds thereof. The crosslinking agent may be a polyglycidyl compound, or may be at least one selected from the group consisting of (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, (poly)propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether.


In general, a usage amount of the surface crosslinking agent may be 0.00001 to 0.02 moles, may be 0.00005 to 0.01 moles, or may be 0.0001 to 0.005 moles, with respect to 1 mole of the ethylenically unsaturated monomer used in the polymerization, from the viewpoint of exhibiting suitable water absorption characteristics by appropriately crosslinking the obtained hydrous gel polymer. By setting an amount of the surface crosslinking agent added to be within the above range, it is easy to obtain water-absorbing resin particles having suitable non-pressurization DW and contact angle.


It is possible to obtain polymer particles, which are a surface-crosslinked dried product, by distilling off water and the hydrocarbon dispersion medium by a known method after the surface crosslinking.


The water-absorbing resin particles according to the present embodiment may be composed of only the polymer particles, but they can further contain, for example, various additional components selected from gel stabilizers, metal chelating agents (ethylenediaminetetraacetic acid and its salts, diethylenetriaminepentaacetic acid and its salts, for example, diethylenetriaminepentaacetic acid pentasodium, and the like), and flowablility improvers (lubricants). The additional components may be disposed inside the polymer particles, on a surface of the polymer particles, or both of the inside and on the surface thereof. The additional component may be flowablility improvers (lubricants), and among them, it may be inorganic particles. Examples of inorganic particles include silica particles such as amorphous silica.


The water-absorbing resin particles may contain a plurality of inorganic particles disposed on the surface of the polymer particles. The inorganic particles can be disposed on the surface of the polymer particles by, for example, mixing the polymer particles and the inorganic particles. These inorganic particles may be silica particles such as amorphous silica. In a case where the water-absorbing resin particles contain inorganic particles disposed on the surface of the polymer particles, a ratio of the inorganic particles to a mass of the polymer particles may be 0.2% by mass or more, 0.5% by mass or more, 1.0% by mass or more, or 1.5% by mass or more, and it may be 5.0% by mass or less or 3.5% by mass or less. The inorganic particles referred to herein generally have a minute size as compared with a size of the polymer particles. For example, an average particle size of the inorganic particles may be 0.1 to 50 μm, 0.5 to 30 μm, or 1 to 20 μm. The average particle size referred to herein can be a value measured by a dynamic light scattering method or a laser diffraction/scattering method. By setting an amount of the inorganic particles added to be within the above range, it is easy to obtain water-absorbing resin particles having suitable non-pressurization DW and contact angle among water absorption characteristics of the water-absorbing resin particles.


One embodiment of the method for producing water-absorbing resin particles may further include a step of evaluating a value of non-pressurization DW after 30 seconds and a contact angle of the obtained water-absorbing resin particles by the method according to the above-described embodiment. For example, water-absorbing resin particles, in which a value of non-pressurization DW after 30 seconds is 1.0 mL/g or more, and a contact angle measured by the above-described method is 90 degrees or smaller, may be sorted out. Accordingly, it is possible to more stably produce the water-absorbing resin particles capable of inhibiting liquid leakage from an absorbent article.


An absorbent according to one embodiment contains the water-absorbing resin particles according to the present embodiment. The absorbent according to the present embodiment can contain a fibrous material, and it is, for example, a mixture containing the water-absorbing resin particles and the fibrous material. The configuration of the absorbent may be, for example, a configuration in which water-absorbing resin particles and the fibrous materials are uniformly mixed, a configuration in which water-absorbing resin particles are held between fibrous materials formed in a sheet shape or a layer shape, or another configuration.


Examples of fibrous materials include finely pulverized wood pulp; cotton; cotton linter; rayon; cellulose-based fibers such as cellulose acetate; synthetic fibers such as polyamides, polyesters, and polyolefins; a mixture of these fibers; and the like. The fibrous material may be used alone or in combination of two or more kinds thereof. As the fibrous material, hydrophilic fibers can be used.


A mass proportion of the water-absorbing resin particles in the absorbent with respect to a total amount of the water-absorbing resin particles and the fibrous material may be 2% to 100% by mass, 10% to 80% by mass, or 20% to 60% by mass.


Fibers may be adhered to each other by adding an adhesive binder to the fibrous material in order to enhance shape retention properties before or during use of the absorbent. Examples of adhesive binders include thermal bonding synthetic fibers, hot-melt adhesives, and adhesive emulsions. The adhesive binder may be used alone or in combination of two or more kinds thereof.


Examples of thermal bonding synthetic fibers include full-melt binders such as polyethylene, polypropylene, and an ethylene-propylene copolymer; partial-melt binders formed of polypropylene and polyethylene in a side-by-side or core-and-sheath configuration; and the like. In the above-mentioned partial-melt binders, only a polyethylene portion can be thermal-bonded.


Examples of hot-melt adhesives include a mixture of a base polymer such as an ethylene-vinyl acetate copolymer, a styrene-isoprene-styrene block copolymer, a styrene-butadiene-styrene block copolymer, a styrene-ethylene-butylene-styrene block copolymer, a styrene-ethylene-propylene-styrene block copolymer, and an amorphous polypropylene with a viscosity imparting agent, a plasticizer, an antioxidant, or the like.


Examples of adhesive emulsions include polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.


The absorbent according to the present embodiment may contain inorganic particles, deodorants, pigments, dyes, fragrances, antibacterial agents, pressure sensitive adhesives, and the like, all of which are generally used in the technical field. These additives can impart various functions to the absorbent. Examples of inorganic particles include silicon dioxide, zeolite, kaolin, clay, and the like. In a case where the water-absorbing resin particles contain inorganic particles, the absorbent may further contain inorganic particles in addition to the inorganic particles in the water-absorbing resin particles.


A shape of the absorbent according to the present embodiment is not particularly limited, but it may be, for example, a sheet shape. A thickness of the absorbent (for example, a thickness of a sheet-shaped. absorbent) may be, for example, 0.1 to 20 mm or 0.3 to 15 mm.


An absorbent article according to the present embodiment includes the absorbent according to the present embodiment. Examples of the absorbent article according to the present embodiment include a core wrap that retains the shape of the absorbent; a liquid-permeable sheet disposed on the outermost part on a side from which an absorption target liquid is infiltrated; a liquid-impermeable sheet disposed on the outermost part on a side opposite to the side from which the absorption target liquid is infiltrated; and the like. Examples of the absorbent article include diapers (for example, paper diapers), toilet training pants, incontinence pads, hygiene products (sanitary napkins, tampons, and the like), sweat pads, pet sheets, portable toilet members, animal excrement treatment materials, and the like.



FIG. 1 is a cross-sectional view showing an example of an absorbent article. An absorbent article 100 shown in FIG. 1 includes an absorbent 10, core wraps 20a and 20b, a liquid-permeable sheet 30, and a liquid-impermeable sheet 40. In the absorbent article 100, the liquid-impermeable sheet 40, the core wrap 20b, the absorbent 10, the core wrap 20a, and the liquid-permeable sheet 30 are laminated in this order. In FIG. 1, there is a portion shown to be a gap between the members, but the members may be in close contact with each other without the gap.


The absorbent 10 has water-absorbing resin particles 10a according to the present embodiment and a fiber layer 10b containing a fibrous material. The water-absorbing resin particles 10a are dispersed in the fiber layer 10b.


Liquid absorption performances of the absorbent article 100 are also affected by water absorption performances of the water-absorbing resin particles 10a used. Accordingly, for the water-absorbing resin particles 10a, water-absorbing resin particles, in which water absorption performances such as a value of non-pressurization DW after 30 seconds, a contact angle, and a liquid absorption capacity (represented by indexes such as a water retention capacity, and a water absorption capacity under a load); a mass average particle size; and the like of the water-absorbing resin particles 10a are within suitable ranges, may be selected in consideration of the configuration of each of the components of the absorbent article 100, and the like.


A content of they water-absorbing resin particles 10a may be 100 to 1,000 g per square meter of the absorbent 10 (that is, 100 to 1,000 g/m2), may be 150 to 800 g/m2, or may be 200 to 700 g/m2 from the viewpoint that sufficient liquid absorption performances can then be more easily obtained when the absorbent 10 is used for the absorbent article 100. A content of the water-absorbing resin particles 10a may be 100 g/m2 or more from the viewpoint of exhibiting sufficient liquid absorption performances as the absorbent article 100 and thereby inhibiting, particularly liquid leakage. A content of the water-absorbing resin particles 10a may be 1,000 g/m2 or less from the viewpoint of inhibiting occurrence of a gel blocking phenomenon, and thereby exhibiting a diffusion performance of a liquid as the absorbent article 100 and further improving a permeation speed of the liquid.


A content of the fibrous material may be 50 to 800 g per square meter of the absorbent 10 (that is, 50 to 800 g/m2), may be 100 to 600 g/m2, or may be 150 to 500 g/m2 from the viewpoint that sufficient liquid absorption performances are then obtained when the absorbent 10 is used for the absorbent article 100. A content of the fibrous material may be 50 g or more per square meter of the absorbent 10 (that is, 50 g/m2 or more) from the viewpoint of exhibiting sufficient liquid absorption performances as the absorbent article 100, and thereby particularly inhibiting occurrence of a gel blocking phenomenon to improve a diffusion performance of a liquid, and increasing strength of the absorbent 10 after it absorbs a liquid. A content of the fibrous material may be 800 g or less per square meter of the absorbent 10 (that is, 800 g/m2 or less) from the viewpoint of particularly inhibiting reversion after liquid absorption.


The absorbent article 100 includes the core wrap 20a that covers the surface side of the absorbent 10 in contact with the liquid-permeable sheet 30, and the core wrap 20b that covers the surface side of the absorbent 10 in contact with the liquid-impermeable sheet 40. The shape of the absorbent 10 is maintained (that is, shape retainability can be enhanced) in the absorbent article 100 having the core wraps 20a and 20b, and thereby fall off and flow of the water-absorbing resin particles 10a and the like constituting the absorbent 10 are prevented or inhibited.


The core wrap 20a is disposed on one surface side of the absorbent 10 (an upper side of the absorbent 10 in FIG. 1) in a state of being in contact with the absorbent 10. That is, the core wrap 20a covers at least the surface side of the absorbent 10 in contact with the liquid-permeable sheet 30. The core wrap 20b is disposed on the other surface side of the absorbent 10 (a lower side of the absorbent 10 in FIG. 1) in a state of being in contact with the absorbent 10. That is, the core wrap 20b covers at least the surface side of the absorbent 10 in contact with the liquid-impermeable sheet 40. The absorbent 10 is disposed between the core wrap 20a and the core wrap 20b. The core wrap 20a and the core wrap 20b each have, for example, a main surface having the same size as that of the absorbent 10.


Examples of the core wraps 20a and 20b include non-woven fabrics, woven fabrics, synthetic resin films having liquid permeation holes, net-like sheets having a mesh, and the like. The core wraps 20a and 20b may be tissues obtained by wet-type molding pulverized pulp from the viewpoint of economic efficiency.


In the absorbent article 100 having the core wrap 20a, the core wrap 20a may be adhered to the liquid-permeable sheet 30. In this case, a liquid is more smoothly guided to the absorbent 10, and thereby it is possible to obtain the absorbent article 100 having a further better effect of inhibiting liquid leakage. The core wrap 20a may be adhered to at least the liquid-permeable sheet 30, or the core wrap 20a may be adhered to the absorbent 10 in addition to being adhered to the liquid-permeable sheet 30.


In the absorbent article 100 in which the absorbent 10 is disposed to be in contact with the liquid-permeable sheet 30, the absorbent 10 may be adhered to the liquid-permeable sheet 30. In this case, a liquid is more smoothly guided to the absorbent 10, and thereby it is possible to obtain the absorbent article 100 having a further better effect of inhibiting liquid leakage.


Examples of methods of adhering the absorbent 10 and/or the core wrap 20a to the liquid-permeable sheet include a method of adhering them by applying the hot-melt adhesive to the liquid-permeable sheet 30 in a vertical stripe shape, a spiral shape, or the like at predetermined intervals in a width direction; a method of adhering them using a water-soluble binder selected from starch, carboxymethyl cellulose, polyvinyl alcohol, polyvinylpyrrolidone, and other water-soluble polymers; and the like. Furthermore, a method of adhering them by thermal bonding may be adopted in a case where the absorbent 10 contains the thermal bonding synthetic fibers.


The liquid-permeable sheet 30 is disposed on the outermost part on a side from which an absorption target liquid is infiltrated. The liquid-permeable sheet 30 is disposed on the core wrap 20a in a state of being in contact with the core wrap 20a. The liquid-permeable sheet 30 has, for example, a main surface wider than the main surface of the absorbent 10, and an outer edge of the liquid-permeable sheet 30 extends around the absorbent 10 and the core wraps 20a and 20b.


The liquid-permeable sheet 30 may be a sheet formed of resin or fiber generally used in the technical field. From the viewpoint of liquid permeability, flexibility, and strength when the liquid-permeable sheet 30 is used in an absorbent article, the liquid-permeable sheet 30 may contain, for example, synthetic resins such as polyolefins such as polyethylene (PE) and polypropylene (PP); polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), and polyethylene naphthalate (PEN); polyamides such as nylon; and rayon, or synthetic fibers containing these synthetic resins, or the liquid-permeable sheet 30 may be natural fibers including cotton, silk, hemp, or pulp (cellulose). The liquid-permeable sheet 30 may contain synthetic fibers from the viewpoint of increasing strength of the liquid-permeable sheet 30. Synthetic fibers may be particularly polyolefin fibers, polyester fibers, or a combination thereof. These materials may be used alone or in combination of two or more materials.


The liquid-permeable sheet 30 may be a non-woven fabric, a porous sheet, or a combination thereof. Non-woven fabric is a sheet in which fibers are entwined instead of being woven. The non-woven fabric may be a non-woven fabric (short-fiber non-woven fabric) composed of short fibers (that is, staples), or may be a non-woven fabric (long-fiber non-woven fabric composed of long fibers (that is, filaments). In general, staples may have a fiber length of several hundred millimeters or shorter, but its length is not limited thereto.


The liquid-permeable sheet 30 may be thermal bonded non-woven fabrics, air through non-woven fabrics, resin bonded non-woven fabrics, spunbond non-woven fabrics, melt-blown non-woven fabrics, airlaid non-woven fabrics, spunlace non-woven fabrics, point-bonded non-woven fabrics, or a laminate of two or more of non-woven fabrics selected from these non-woven fabrics. These non-woven fabrics can be, for example, non-woven fabrics formed of the above-mentioned synthetic fibers or natural fibers. The laminate of two or more of non-woven fabrics may be, for example, a spunbond/melt-blown/spunbond non-woven fabric that is a composite non-woven fabric having spunbond non-woven fabric, melt-blown non-woven fabric, and spunbond non-woven fabric, which are laminated in this order. Among them, the liquid-permeable sheet 30 may be a thermal bonded non-woven fabric, an air through non-woven fabric, a spunbond non-woven fabric, or a spunbond/melt-blown/spunbond non-woven fabric, from the viewpoint of inhibiting liquid leakage.


It is desirable that a non-woven fabric used as the liquid-permeable sheet 30 have appropriate hydrophilicity from the viewpoint of liquid absorption performances of the absorbent article. From this viewpoint, the liquid-permeable sheet 30 may be a non-woven fabric having a hydrophilicity of 5 to 200 as measured according to a measurement method of Pulp and Paper Test Method No. 68 (2000) by the Japan Technical Association of Pulp and Paper Industry. The hydrophilicity of the non-woven fabric may be 10 to 150.For details of Pulp and Paper Test Method No. 68, for example, WO2011/086843 can be referred to.


The hydrophilic non-woven fabric as described above may be formed of fibers, such as rayon fibers, showing appropriate hydrophilicity, or may be formed of fibers obtained by hydrophilizing hydrophobic chemical fibers such as polyolefin fibers and polyester fibers. Examples of methods of obtaining a non-woven fabric containing hydrophobic chemical fibers that have been hydrophilized include a method of obtaining a non-woven fabric by a spunbond technique using a mixture in which a hydrophilizing agent is added to hydrophobic chemical fibers, a method of using a hydrophilizing agent when producing a spunbond non-woven fabric from hydrophobic chemical fibers, and a method of impregnating a spunbond non-woven fabric obtained by using hydrophobic chemical fibers with a hydrophilizing agent. As the hydrophilizing agent, the following examples are used: anionic surfactants such as aliphatic sulfonic acid salts and higher alcohol sulfuric acid ester salts; cationic surfactants such as quaternary ammonium salts; nonionic surfactants such as polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acid esters; silicone surfactants such as polyoxyalkylene-modified silicone; stain release agents formed of polyester-based, polyamide-based, acrylic-based, or urethane-based resin; and the like.


The liquid-permeable sheet 30 may be a non-woven fabric that is moderately bulky and has a large fabric weight per unit area from the viewpoint of imparting favorable liquid permeability, flexibility, strength, and cushioning properties to an absorbent article, and from the viewpoint of accelerating a liquid penetration speed of an absorbent article. In a case where the liquid-permeable sheet 30 is a non-woven fabric, a fabric weight per unit area of the liquid-permeable sheet 30 may be 5 to 200 g/m2, may be 8 to 150 g/m2, may be 10 to 100 g/m2, may be 15 to 60 g/m2, or may be 20 to 30 g/m2. In a case where the liquid-permeable sheet 30 is a non-woven fabric, a thickness of the liquid-permeable sheet 30 may be 20 to 1,400 μm, may be 50 to 1,200 μm, or may be 80 to 1,000 μm.


The liquid-impermeable sheet 40 is disposed on the outermost part on a side opposite to the liquid-permeable sheet 30, in the absorbent article 100. The liquid-impermeable sheet 40 is disposed below the core wrap 20b in a state of being in contact with the core wrap 20b. The liquid-impermeable sheet 40 has, for example, a main surface wider than the main surface of the absorbent 10, and an outer edge of the liquid-impermeable sheet 40 extends around the absorbent 10 and the core wraps 20a and 20b. The liquid-impermeable sheet 40 prevents a liquid absorbed by the absorbent 10 from leaking to the outside from the liquid-impermeable sheet 40 side.


Examples of the liquid-impermeable sheet 40 include sheets made of synthetic resins such as polyethylene, polypropylene, and polyvinyl chloride; sheets made of non-woven fabric such as a spunbond/melt-blown/spunbound (SMS) non-woven fabric in which a water-resistant melt blown non-woven fabric is sandwiched between high-strength spunbond non-woven fabrics; sheets made of a composite material of these synthetic resins and non-woven fabric (for example, spunbond non-woven fabric and spunlace non-woven fabric); and the like. The liquid-impermeable sheet 40 may have breathability from the viewpoint that dampness generated when wearing the absorbent article is then reduced, and thereby discomfort to a wearer can be reduced. As the liquid-impermeable sheet 40, it is possible to use a sheet made of a synthetic resin mainly composed of a low density polyethylene (LDPE) resin. The liquid-impermeable sheet 40 may be, for example, a sheet made of a synthetic resin and having a fabric weight per unit area of 10 to 50 g/m2 from the viewpoint of ensuring flexibility so as not to impair a sensation of wearing the absorbent article.


A magnitude relationship between the absorbent 10, the core wraps 20a and 20b, the liquid-permeable sheet 30, and the liquid-impermeable sheet 40 is not particularly limited, and it is appropriately adjusted according to usage applications and the like of the absorbent article. Furthermore, a method of retaining the shape of the absorbent 10 using the core wraps 20a and 20b is not particularly limited. The absorbent may be wrapped with a plurality of the core wraps as shown in FIG. 1, or the absorbent may be wrapped with one core wrap.


According to the present embodiment, it is possible to provide a method of absorbing a liquid using the water-absorbing resin particles, absorbent, or absorbent article according to the present embodiment. The method of absorbing a liquid according to the present embodiment includes a step of bringing an absorption target liquid into contact with the water-absorbing resin particles, absorbent, or absorbent article according to the present embodiment.


EXAMPLES

Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.


Production of Water-Absorbing Resin Particles
Production of Water-Absorbing Resin Particles Of Example 1 (Production Example 1)

A cylindrical round-bottomed separable flask was prepared, which had an inner diameter of 11 cm and a capacity of 2 L, and was equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction tube, and as a stirrer, a stirring blade having four inclined paddle blades, each having a blade diameter of 5 cm, in a two-tier manner. 293 g of n-heptane as a hydrocarbon dispersion medium was weighed into this flask, and 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (HI-WAX 1105A, manufactured by Mitsui Chemicals, Inc.) as a polymeric dispersant were added thereinto. The reaction solution was heated to 80° C. while being stirred to dissolve the dispersant, and then was cooled to 50° C.


Meanwhile, 92.0 g (1.03 moles) of an aqueous solution of 80.5% by mass acrylic acid as a water-soluble ethylenically unsaturated monomer was weighed into a beaker with an internal capacity of 300 mL, and 147.7 g of an aqueous solution of 20.9% by mass sodium hydroxide was added dropwise thereto while cooling the beaker from the outside to perform neutralization to 75 mol %. Thereafter, 0.092 g of hydroxylethyl cellulose (HEC AW-15F, Sumitomo Seika Chemicals Co., Ltd.) as a thickener, 0.092 g (0.339 mmol) of 2,2′-azobis(2-amidinopropane) dihydrochloride and 0.018 g (0.068 mmol) of potassium persulfate as a water-soluble radical polymerization initiator, and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal crosslinking agent were added and dissolved to prepare a first-stage aqueous liquid.


Then, the aqueous liquid prepared above was added into the separable flask and stirred for 10 minutes. Thereafter, a surfactant solution, which was obtained by dissolving 0.736 g of sucrose stearic acid ester with HLB 3 (RYOTO Sugar Ester S-370, Mitsubishi-Chemical Foods Corporation) as a surfactant in 6.62 g of n-heptane through heating, was further added into the flask. While stirring the reaction solution at 550 rpm as a rotational speed of the stirrer, the inside of the system was sufficiently replaced with nitrogen. Thereafter, the flask was immersed in a water bath at 70° C. to raise its temperature, and polymerization was performed for 60 minutes. Thereby, a first-stage polymerization slurry liquid was obtained.


Meanwhile, 128.8 g (1.43 moles) of an aqueous solution of 80.5% by mass acrylic acid as a water-soluble ethylenically unsaturated monomer was weighed into another beaker with an internal capacity of 500 m, and 159.0 g of an aqueous solution of 27% by mass sodium hydroxide was added dropwise thereto while cooling the beaker from the outside to perform neutralization to 75 mol %. Thereafter, 0.129 g (0.475 mmol) of 2,2′-azobis(2-amidinopropane) dihydrochloride and 0.026 g (0.095 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added and dissolved to prepare a second-stage aqueous liquid.


While stirring the aqueous liquid at 1,000 rpm as a rotational speed of the stirrer, the inside of the separable flask system was cooled to 25° C., and then a total amount of the second-stage aqueous liquid was added to the first-stage polymerization slurry liquid. The inside of the system was replaced with nitrogen for 30 minutes. Thereafter, the flask was immersed in a water bath again at 70° C. to raise its temperature, and a polymerization reaction was performed for 60 minutes. Thereafter, 0.580 g (0.067 mmol) of an aqueous solution of 2% by mass ethylene glycol diglycidyl ether was added as a crosslinking agent for post-polymerization crosslinking, and thereby a hydrous gel polymer was obtained.


Under stirring, 0.265 g of an aqueous solution of 45% by mass diethylenetriaminepentaacetic acid pentasodium was added to the hydrous gel polymer obtained after the second-stage polymerization. Thereafter, the flask was immersed in an oil bath set to 125° C., and 238.5 g of water was extracted out of the system while n-heptane was refluxed by azeotropic distillation with n-heptane and water. Thereafter, 4.42 g (0.507 mmol) of an aqueous solution of 2% by mass ethylene glycol diglycidyl ether as a surface crosslinking agent was added into the flask, and maintained at 83° C. for 2 hours.


Thereafter, n-heptane was evaporated at 125° C., and the residue was dried to obtain polymer particles (dried product). These polymer particles were passed through a sieve having an aperture of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Tokusil NP-S) with respect to a mass of the polymer particles was mixed with the polymer particles. Thereby, 232.1 g of water-absorbing resin particles containing the amorphous silica was obtained. A median particle size of the water-absorbing resin particles was 396 μm.


Production of Water-Absorbing Resin Particles of Example 2 (Production Example 2)

236.3 g of water-absorbing resin particles was obtained in the same manner as in Example 1 (Production Example 1) except that 2.0% by mass of amorphous silica (Oriental Silicas Corporation, Tokusil NP-S) was mixed with the polymer particles (dried product). A median particle size of the water-absorbing resin particles was 393 μm.


Production of Water-Absorbing Resin Particles of Example 3 (Production Example 3)

231.0 g of water-absorbing resin particles was obtained in the same manner as in Example 1 (Production Example 1) except that, in preparation of a first-stage aqueous liquid, 0.0736 g (0.272 mmol) of potassium persulfate was used as a water-soluble radical polymerization agent, but 2,2′-azobis(2-amidinopropane) dihydrochloride was not used; in preparation of a second-stage aqueous liquid, 0.090 g (0.334 mmol) of potassium persulfate was used as a water-soluble radical polymerization agent, but 2,2′-azobis(2-amidinopropane) dihydrochloride was not used; for a hydrous gel polymer obtained after second-stage polymerization, 247.9 g of water was extracted out of the system by azeotropic distillation; and 0.5% by mass of amorphous silica with respect to a mass of polymer particles was mixed with the polymer particles. A median particle size of the water-absorbing resin particles was 355 μm.


Production of Water-Absorbing Resin Particles of Example 4 (Production Example 4)

229.2 g of water-absorbing resin particles was obtained in the same manner as in Example 1 (Production Example 1) except that, in preparation of a first-stage aqueous liquid, 0.0736 g (0.272 mmol) of potassium persulfate was used as a water-soluble radical polymerization agent, but 2,2′-azobis(2-amidinopropane) dihydrochloride was not used; in preparation of a second-stage aqueous liquid, 0.090 g (0.334 mmol) of potassium persulfate was used as a water-soluble radical polymerization agent, but 2,2′-azobis(2-amidinopropane) dihydrochioride was not used; for a hydrous gel polymer obtained after second-stage polymerization, 239.7 g of water was extracted out of the system by azeotropic distillation; and 0.5% by mass of amorphous silica was mixed with polymer particles. A median particle size of the water-absorbing resin particles was 377 μm.


Production of Water-Absorbing Resin Particles of Comparative Example 1 (Production Example 5)

230.8 g of water-absorbing resin particles was obtained in the same manner as in Example 1 (Production Example 1) except that, in preparation of a first-stage aqueous liquid, 0.0736 g (0.272 mmol) of potassium persulfate was used as a water-soluble radical polymerization agent, but 2,2′-azobis(2-amidinopropane) dihydrochloride was not used; in preparation of a second-stage aqueous liquid, 0.090 g (0.334 mmol) of potassium persulfate was used as a water-soluble radical polymerization agent, but 2,2′-azobis(2-amidinopropane) dihydrochloride was not used, and 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether was used as an internal crosslinking agent; a crosslinking agent for post-polymerization crosslinking was not added; for a hydrous gel polymer obtained after second-stage polymerization, 256.1 g of water was extracted out of the system by azeotropic distillation; and 0.1% by mass of amorphous silica with respect to a mass of polymer particles was mixed with the polymer particles. A median particle size of the water-absorbing resin particles was 349 μm.


Production of Water-Absorbing Resin Particles of Comparative Example 2 (Production Example 6)

229.6 g of water-absorbing resin particles was obtained in the same manner as in Example 1 (Production Example 1) except that, in preparation of a first-stage aqueous liquid, 0.0046 g (0.026 mmol) of ethylene glycol diglycidyl ether was used as an internal crosslinking agent; in preparation of a second-stage aqueous liquid, 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether was used as an internal crosslinking agent; a crosslinking agent for post-polymerization crosslinking was not added; and for a hydrous gel polymer obtained after second-stage polymerization, 219.2 g of water was extracted out of the system by azeotropic distillation, and 6.62 g (0.761 mmol) of an aqueous solution of 2% by mass ethylene glycol diglycidyl ether was used as a surface crosslinking agent. A median particle size of the water-absorbing resin particles was 356 μm.


Production of Water-Absorbing Resin Particles of Comparative Example 3 (Production Example 7)

229.6 g of water-absorbing resin particles was obtained in the same manner as in Example 1 (Production Example 1) except that, in preparation of a first-stage aqueous liquid, 0.0046 g (0.026 mmol) of ethylene glycol diglycidyl ether was used as an internal crosslinking agent; in preparation of a second-stage aqueous liquid, 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether was used as an internal crosslinking agent; a crosslinking agent for post-polymerization crosslinking was not added; and for a hydrous gel polymer obtained after second-stage polymerization, 234.2 g of water was extracted out of the system by azeotropic distillation. A median particle size of the water-absorbing resin particles was 355 μm.


Measurement of Water Retention Capacity for Physiological Saline Solution

A cotton bag (cotton broadcloth No. 60, 100 mm in width×200 mm in length) into which 2.0 g of the water-absorbing resin particles had been weighed was placed in a beaker having a capacity of 500 mL. 500 g of an aqueous solution of 0.9% by mass sodium chloride (physiological saline solution) was poured into the cotton bag containing the water-absorbing resin particles at once so that a lump could not be produced. The upper part of the cotton bag was bound with a rubber band and left to stand for 30 minutes, and thereby the water-absorbing resin particles were swollen. The cotton bag after an elapse of 30 minutes was dehydrated for 1 minute using a dehydrator (manufactured by KOKUSAN Co., Ltd., product number: H-122) which had been set at a centrifugal force of 167 G, and a mass Wa (g) of the dehydrated cotton bag containing the swollen gel was measured. By performing the same operation without addition of the water-absorbing resin particles, a mass Wb (g) of an empty cotton bag upon moisturizing was measured, and a water retention capacity for a physiological saline solution was calculated by the following formula.





Water retention capacity for physiological saline solution (g/g)=[Wa−Wb]/2.0


Water Absorption Capacity of Water-Absorbing Resin Particles Under Load

A water absorption capacity (room temperature, 25° C.±2° C.) of the water-absorbing resin particles for a physiological saline solution under a load (under pressurization) was measured using a measuring device Y shown in FIG. 3. The measuring device Y is composed of a burette part 61, a conduit pipe 62, a measuring stand 63, and a measuring part 64 placed on the measuring stand 63. The burette part 61 includes a burette 61a extending in a vertical direction, a rubber stopper 61b disposed at an upper end of the burette 61a, a cock 61c disposed at a lower end of the burette 61a, an air introducing pipe 61d having one end extending to the burette 61a in the vicinity of the cock 61c, and a cock 61e disposed at the other end side of the air introducing pipe 61d. The conduit pipe 62 is attached between the burette part 61 and the measuring stand 63. An inner diameter of the conduit pipe 62 is 6 m. A hole with a diameter of 2 min is present in a center portion of the measuring stand 63, and the conduit pipe 62 is connected to the hole. The measuring part 64 includes a cylinder 64a (made of acrylic resin (plexiglass)), a nylon mesh 64b adhered to a bottom portion of the cylinder 64a, and a weight 64c. An inner diameter of the cylinder 64a is 20 mm. An aperture of the nylon mesh 64b is 75 μm (200 mesh). Then, at the time of measurement, water-absorbing resin particles 65 which are measurement targets are uniformly dispersed on the nylon mesh 64b. A diameter of the weight 64c is 19 mm, and a mass of the weight 64c is 120 g. The weight 64c can be placed on the water-absorbing resin particles 65 to apply a load of 4.14 kPa to the water-absorbing resin particles 65.


After 0.100 g of the water-absorbing resin particles 65 were put into the cylinder 64a of the measuring device Y, the weight 64c was placed thereon, and the measurement was started. The same volume of air as the physiological saline solution absorbed by the water-absorbing resin particles 65 was quickly and smoothly supplied to the inside of the burette 61a through the air introducing pipe, and therefore a reduced amount in water level of the physiological saline solution inside the burette 61a was an amount of the physiological saline solution absorbed by the water-absorbing resin particles 65. A scale of the burette 61a was engraved from 0 mL in increments of 0.5 mL, from the top to bottom direction. A scale Va of the burette 61a before the start of water absorption and a scale Vb of the burette 61a 60 minutes after the start of water absorption were read as water levels of the physiological saline solution, and a water absorption capacity under a load was calculated from the following formula. The results are shown in Table 1.





Water absorption capacity under load [mL/g]=(Vb−Va)/0.1


Median Particle Size

50 g of the water-absorbing resin particles was used for measuring a median particle size.


JIS standard sieves were combined in the following order from the top: a sieve having an aperture of 850 μm, a sieve having an aperture of 500 μm, a sieve having an aperture of 425 μm, a sieve having an aperture of 300 μm, a sieve having an aperture of 250 μm, a sieve having an aperture of 180 μm, a sieve having an aperture of 150 μm, and a receiving tray.


The water-absorbing resin particles were fed to the topmost sieve among the combination of the sieves, shaken for 20 minutes using a Ro-Tap shaker, and thereby classified. After the classification, a mass of the water-absorbing resin particles remaining on each of the sieves was calculated as a mass percentage with respect to a total amount to determine a particle size distribution. By integrating values on the sieves in descending order of the particle sizes with regard to the particle size distribution, a relationship between the aperture of the sieve and the integrated value of mass percentages of the water-absorbing resin particles remaining on the sieve was plotted on a log-probability paper. The plotted points on the probability paper were connected with straight lines, and a particle size corresponding to 50% by mass of the integrated mass percentage was taken as a median particle size.


Measurement of Value of Non-Pressurization Demand Wettability (DW) after 30 Seconds

Non-pressurization DW of the water-absorbing resin particles was measured using a measuring device shown in FIG. 2. The measurement was carried out five times for one type of water-absorbing resin particles, and an average value of three measurement values excluding a minimum value and a maximum value was obtained.


The measuring device has a burette part 1, a conduit pipe 5, a measuring stand 13, a nylon mesh sheet 15, a stand 11, and a clamp 3. The burette part 1 has a burette tube 21 on which a scale is engraved, a rubber stopper 23 for sealing an opening at an upper part of the burette tube 21, a cock 22 connected to a distal end of a lower part of the burette tube 21, an air introducing pipe 25 connected to the lower part of the burette tube 21, and a cock 24. The burette part 1 is fixed by the clamp 3. The flat plate-shaped measuring stand 13 has a through-hole 13a having a diameter of 2 mm and formed in the center portion of the measuring stand 13, and is supported by the height-variable stand 11. The through-hole 13a of the measuring stand 13, and the cock 22 of the burette part 1 are connected by the conduit pipe 5. An inner diameter of the conduit pipe 5 is 6 mm.


The measurement was performed in the environment of a temperature of 25° C. and a humidity of 60±10%. First, the cock 22 and the cock 24 of the burette part 1 were closed, and a 0.9% by mass saline solution 50 that had been adjusted to 25° C. was put into the burette tube 21 through the opening at the upper part of the burette tube 21. A concentration of 0.9% by mass of the saline solution is a concentration based on a mass of the saline solution. The opening of the burette tube 21 was sealed with the rubber stopper 23, and then the cock 22 and the cock 24 were opened. The inside of the conduit pipe 5 was filled with the 0.9% by mass saline solution 50 to prevent air bubbles from entering. A height of the measuring stand 13 was adjusted so that a height of a water surface of the 0.9% by mass saline solution, which had reached the inside of the through-hole 13a, was the same as a height of an upper surface of the measuring stand 13. After the adjustment, the height of the water surface of the 0.9% by mass saline solution 50 in the burette tube 21 was read by the scale on the burette tube 21, and this position was defined as a zero point (value read at 0 seconds).


The nylon mesh sheet 15 (100 mm×100 mm, 250 mesh, thickness about 50 μm) was laid in the vicinity of the through-hole 13 on the measuring stand 13, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed on the center portion of the nylon mesh sheet. 1.00 g of water-absorbing resin particles 10a were uniformly dispersed in this cylinder. Thereafter, the cylinder was carefully removed to obtain a sample in which the water-absorbing resin particles 10a were dispersed in a circle shape in the center portion of the nylon mesh sheet 15. Then, the nylon mesh sheet 15 on which the water-absorbing resin particles 10a were placed was moved at a high speed to the extent that the water-absorbing resin particles 10a did not dissipate so that the center of the nylon mesh sheet was at the position of the through-hole 13a, and the measurement was started. A timing when air bubbles were first introduced from the air introducing pipe 25 into the burette tube 21 was defined as a start of water absorption (0 seconds).


An amount of decrease in the 0.9% by mass saline solution 50 in the burette tube 21 (that is, an amount of the 0.9% by mass saline solution absorbed by the water-absorbing resin particles 10a) was sequentially read by units of 0.1 mL, and a reduction in weight Wc (g) of the 0.9% by mass saline solution 50 was read 30 seconds after the start of water absorption by the water-absorbing resin particles 10a. A value of non-pressurization DW after 30 seconds was obtained from We by the following formula. The non-pressurization DW is a water absorption capacity per 1.00 g of the water-absorbing resin particles 10a.





Value of non-pressurization DW after 30 seconds (mL/g)=Wc/1.00


Measurement of Contact Angle

A contact angle was measured in the environment of a temperature of 25° C. and a humidity of 60±10%. A double-sided tape (NICETACK manufactured by NICHIBAN Co., Ltd.: 10 mm×75 mm) was attached to a glass slide (25 mm×75 mm) to prepare the glass slide on which an adhesive surface was exposed. First, 2.0 g of water-absorbing resin particles were uniformly dispersed on the double-sided tape attached to the slide. Thereafter, the slide was stood vertically to remove excess water-absorbing resin particles, and thereby a measurement sample was prepared.


A contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.: Face s-150) is composed of a sample mounting stage that can move up and down, a syringe part installed above it, and a scope part by which the stage can be horizontally observed. A contact angle was measured by the following procedure using such a contact angle meter.


First, the measurement sample was placed on the stage part vertically below the syringe (capacity: 1 ml). A spherical liquid droplet, with a diameter of 3 mm, of a 25% by mass saline solution was prepared at a distal portion of the syringe using the scope of the contact angle meter. A diameter of the spherical liquid droplet was acceptable up to ±0.1 mm. The stage was moved upwards to bring the prepared liquid droplet into contact with a position at which a surface of the sample was smooth (where this timing is defined as t=0 (seconds)). An angle between a straight line, which connected left and right end points on the contact surface between the liquid droplet of the saline solution and the surface of the double-sided tape and an apex point, and the surface of the double-sided tape was read by a lens of the contact angle meter at a timing of t=30 (seconds), and this angle was defined as θ/2. The above angle was doubled to obtain a contact angle θ. The measurement was repeated 5 times, and an average value was defined as a contact angle of the water-absorbing resin particles. The angle reading method conforms to “Testing Method Of Wettability Of Glass Substrate Surface” in JIS R 3257 (1999).


Inclination Leakage Test
Preparation of Artificial Urine

A solution was prepared by blending and dissolving components in ion exchange water so that inorganic salts were present as shown below. A small amount of Blue No. 1 was further blended therein, and thereby artificial urine (test solution) was prepared. The following concentrations are concentrations based on a total mass of the artificial urine.


Composition of artificial urine


NaCl: 0.780% by mass


Cal2: 0.022% by mass


MgSO4: 0.038% by mass


Blue No. 1: 0.002% by mass


Evaluation of Leakage Properties

Leakage properties of the water-absorbing resin particles were evaluated by the following procedures i), ii), iii), iv) and v).


i) A strip-shaped adhesive tape (manufactured by DIATEX Co., Ltd., Piolan tape) having a length of 15 cm and a width of 5 cm was put on a laboratory table such that an adhesive surface faced up, and 3.0 g of the water-absorbing resin particles was evenly dispersed onto this adhesive surface. A stainless steel roller (mass 4.0 kg, diameter 10.5 cm, width 6.0 cm) was placed on the upper part of the dispersed water-absorbing resin particles, and this roller was caused to reciprocate three times between both ends of the adhesive tape in a longitudinal direction. Accordingly, a water-absorbing layer formed of the water-absorbing resin particles was formed on the adhesive surface of the adhesive tape.


ii) The adhesive tape was stood vertically to remove excess water-absorbing resin particles from the water-absorbing layer. The roller was placed on the water-absorbing layer again and caused to reciprocate three times between both ends of the adhesive tape in the longitudinal direction.


iii) In a room at a tempera of 25±2° C., an acrylic resin plate having a rectangular flat main surface with a length of 30 cm and a width of 55 cm was fixed such that its width direction was parallel to the horizontal plane, and an angle between its main surface and the horizontal plane was 30 degrees. The adhesive tape on which the water-absorbing layer was formed was bonded to the main surface of the fixed acrylic plate such that the water-absorbing layer was exposed and in a direction in which the longitudinal direction of the adhesive tape was perpendicular to the width direction of the acrylic resin plate.


iv) Using a micropipette (PIPETMAN Neo P1000N manufactured by M&S Instruments Inc.), 0.25 mL of a test solution at a liquid temperature of 25° C. was entirety injected within 1 second into a position about 1 cm from the upper end of the water-absorbing layer, from a height of about 1 cm from the surface.


v) 30 seconds after the start of the injection of the test solution, a maximum value of a moving distance of the test solution injected into the water-absorbing layer was read and recorded as a diffusion distance D. The diffusion distance D is a distance on the main surface connecting a dropping point (injection point) and the longest reaching point with a straight line in a direction perpendicular to the horizontal plane of the short side of the acrylic resin plate. When the diffusion. distance D was 14 cm or longer, liquid leakage occurred.











TABLE 1








Performance of water-absorbing resin particles















Water
Value of

Inclination




absorption
non-pressurization

leakage test



Water retention
capacity
DW after 30
Contact
Diffusion


Example Comparative
capacity
under load
seconds
angle
distance


Example
[g/g]
[ml/g]
[ml/g]
[degree]
[cm]





Example 1
41
22
3.5
61
12 


Example 2
41
22
9.6
28
8


Example 3
35
20
7.0
33
9


Example 4
31
25
2.0
44
10 


Comparative Example 1
43
18
0.3
104 
14 or longer


Comparative Example 2
28
26
0.6
68
14 or longer


Comparative Example 3
51
17
1.0
92
14 or longer









Based on the results in Table 1, it was shown that the water-absorbing resin particles obtained in the examples can inhibit liquid leakage as compared with the water-absorbing resin particles obtained in the comparative examples.


Production of Absorbent and Absorbent Article
Production of Absorbent Article of Example 1

10 g of the water-absorbing resin particles of Example 1 (Production Example 1) and 9.5 g of pulverized pulp were uniformly mixed by air papermaking using an air flow type mixer (Padformer manufactured by O-tee Co., Ltd.), and thereby a sheet-shaped absorbent having a size of 12 cm×32 cm was produced. The absorbent was disposed on a tissue paper (core wrap) having a basis weight of 16 g/m2. A tissue paper (core wrap), and an air through non-woven fabric (liquid-permeable sheet), which is a short-fiber non-woven fabric, were laminated on the absorbent in this order. A load of 588 kPa was applied to this laminate for 30 seconds. Furthermore, a polyethylene liquid-impermeable sheet having a size of 12 cm×32 cm was bonded to a surface on the side opposite to the air through non-woven fabric, and thereby an absorbent article containing the water-absorbing resin particles of Example 1 was produced. A fabric weight per unit area of the air through non-woven fabric used was 17 g/m2.


Production of Absorbent Articles of Examples 2 to 4

Absorbent articles respectively containing the water-absorbing resin particles of Examples 2 to 4 were produced in the same manner as in the absorbent article containing the water-absorbing resin particles of Example 1 except that the water-absorbing resin particles were changed to the water-absorbing resin particles of Examples 2 to 4 (Production Examples 2 to 4).


Production of Absorbent Article of Example 5

An absorbent article was produced in the same manner as in the absorbent article containing the water-absorbing resin particles of Example 1 except that an absorbent was produced using the water-absorbing resin particles of Example 2 (Production Example 2), and an air through non-woven fabric having a fabric weight per unit area of 23 g/m2 was used for a liquid-permeable top sheet.


Production of Absorbent Articles of Comparative Examples 1 to 3

Absorbent articles respectively containing the water-absorbing resin particles of Comparative Examples 1 to 3 were produced in the same manner as in the absorbent article containing the water-absorbing resin particles of Example 1 except that the water-absorbing resin particles were changed to the water-absorbing resin particles of Comparative Examples 1 to 3 (Production Examples 5 to 7).


In the absorbent articles of the examples and the comparative examples, a basis weight of the water-absorbing resin particles was 280 g/m2, and a basis weight of the pulverized pulp (hydrophilic fibers) was 260 g/m2. Table 2 shows combinations of the water-absorbing resin particles and the liquid-permeable sheets used in the examples and the comparative examples.












TABLE 2









Performance of water-





absorbing resin particles
Liquid-permeable sheet














Water-
Water
Value of DW


Fabric



absorbing
retention
after 30
Contact

weight per



resin
capacity
seconds
angle

unit area



particles
[g/g]
[ml/g]
[degree]
Type
[g/m2]
















Example 1
Production
41
3.5
61
Air through
17



Example 1



non-woven fabric








(short-fiber








non-woven fabric)



Example 2
Production
41
9.6
28
Air through
17



Example 2



non-woven fabric








(short-fiber








non-woven fabric)



Example 3
Production
35
7.0
33
Air through
17



Example 3



non-woven fabric








(short-fiber








non-woven fabric)



Example 4
Production
31
2.0
44
Air through
17



Example 4



non-woven fabric








(short-fiber








non-woven fabric)



Example 5
Production
41
9.6
28
Air through
23



Example 2



non-woven fabric








(short-fiber








non-woven fabric)



Comparative
Production
43
0.3
104
Air through
17


Example 1
Example 5



non-woven fabric








(short-fiber








non-woven fabric)



Comparative
Production
28
0.6
68
Air through
17


Example 2
Example 6



non-woven fabric








(short-fiber








non-woven fabric)



Comparative
Production
51
1.0
92
Air through
17


Example 3
Example 7



non-woven fabric








(short-fiber








non-woven fabric)









Slope Absorption Test


FIG. 4 is a schematic view showing a method for evaluating leakage properties of an absorbent article. A support plate 1 (herein referred to as an acrylic resin plate, and hereinafter also referred to as an inclined plane S1) with a length of 45 cm and having a flat main surface was fixed by a stand 41 in a state of being inclined at 45±2 degrees with respect to a horizontal plane S0. An absorbent article 100 for testing was bonded onto the inclined plane S1 of the fixed support plate 1 in a room at a temperature of 25±2° C. such that a longitudinal direction of the absorbent article 100 was along a longitudinal direction of the support plate 1. Next, a test solution 51 (artificial urine) adjusted to 25±1° C. was added dropwise from a dropping funnel 42 vertically disposed above the absorbent article toward a position 8 cm, in an upper direction, from the center of an absorbent in the absorbent article 100. 80 mL of the test solution was added dropwise at a time at a speed of 8 mL/sec. A distance between a tip end of the dropping funnel 42 and the absorbent article was 10±1 mm. The test solution was repeatedly added under the same conditions at intervals of 10 minutes from the start of the first addition of the test solution. The test solution was added until leakage was observed.


In a case where the test solution that was not absorbed by the absorbent article 100 leaked out from a lower part of the support plate 1, the leaked test solution was recovered in a metal tray 44 disposed below the support plate 1. A weight (g) of the recovered test solution was measured by a balance 43, and this value was recorded as an amount of leakage. The amount of leakage was subtracted from a total amount of the test solution added to calculate an amount of absorption until the leakage occurred. It is judged that as this numerical value becomes large, liquid leakage is unlikely to occur when the absorbent article is worn.











TABLE 3









Gradient absorption test



























Amount of











Number
absorption











of addition
until leakage



Water-absorbing
1st
2nd
3rd
4th
5th
6th
7th
until leakage
occurs



resin particles
[g]
[g]
[g]
[g]
[g]
[g]
[g]
occurs
[g]




















Example 1
Production
0
0
0
0
26


5
374



Example 1











Example 2
Production
0
0
0
0
0
10

6
470



Example 2











Example 3
Production
0
0
0
0
7


5
393



Example 3











Example 4
Production
0
0
0
0
3


5
397



Example 4











Example 5
Production
0
0
0
0
0
0
43
7
517



Example 2











Comparative
Production
0
0
0
6
43


4
314


Example 1
Example 5











Comparative
Production
0
0
0
21
12


4
299


Example 2
Example 6











Comparative
Production
0
0
0
8
35


4
312


Example 3
Example 7









Based on the results shown in Table 3, it can be said that the absorbent articles of Examples 1 to 5 are absorbent articles in which the occurrence of leakage is inhibited as compared with the absorbent articles of Comparative Examples 1 to 3.


REFERENCE SIGNS LIST


1: burette part



3: clamp



5: conduit pipe



10: absorbent



10
a,
65: water-absorbing resin particle



10
b: fiber layer



11: stand



13: measuring stand



13
a: through-hole



15: nylon mesh sheet:



20
a,
20
b: core wrap



21: burette tube



22: cock



23: rubber stopper



24: cock



25: air introducing pipe



30: liquid-permeable sheet



40: liquid-impermeable sheet



50: 0.9% by mass saline solution



51: test solution



61: burette part



61
a: burette



61
b: rubber stopper



61
c: cock



61
d: air introducing pipe



61
e: cock



62: conduit pipe



63: measuring stand



64: measuring part



64
a: cylinder



64
b: nylon mesh



64
c: weight



100: absorbent article


S0: horizontal plane


S1: inclined plane

Claims
  • 1. Water-absorbing resin particles comprising: a crosslinked polymer having a monomer unit derived from an ethylenically unsaturated monomer comprising at least one compound selected from the group consisting of (meth)acrylic acid and a salt thereof,wherein a proportion of a (meth)acrylic acid and a salt thereof is 70 to 100 mol % with respect to a total amount of monomer units in the crosslinked polymer,a value of non-pressurization DW after 30 seconds is 1.0 mL/g or more,a contact angle measured in a test performed in the order of i) and ii) below is 20 degrees or larger and 80 degrees or smaller, anda water retention capacity for a physiological saline solution is 35 to 60 g/g,i) a spherical liquid droplet, which corresponds to a diameter of 3.0±0.1 mm, of a 25% by mass saline solution is added dropwise at 25° C. onto a surface of a layer formed from the water-absorbing resin particles to bring the water-absorbing resin particles into contact with the liquid droplet, andii) a contact angle of the liquid droplet is measured at a timing which is 30 seconds after the liquid droplet is brought into contact with the surface.
  • 2. The water-absorbing resin particles according to claim 1, wherein the contact angle is 20 degrees or larger and 70 degrees or smaller.
  • 3. An absorbent article comprising: a liquid-impermeable sheet;an absorbent; anda liquid-permeable sheet,wherein the liquid-impermeable sheet, the absorbent, and the liquid-permeable sheet are disposed in this order, andthe absorbent comprises the water-absorbing resin particles according to claim 1.
  • 4. The absorbent article according to claim 3, wherein the liquid-permeable sheet comprises thermal bonded non-woven fabrics, air through non-woven fabrics, resin bonded non-woven fabrics, spunbond non-woven fabrics, melt-blown non-woven fabrics, airlaid non-woven fabrics, spunlace non-woven fabrics, point-bonded non-woven fabrics, or a laminate of two or more of non-woven fabrics selected from these non-woven fabrics.
  • 5. The absorbent article according to claim 3, wherein the absorbent further comprises a fibrous material.
  • 6. The absorbent article according to claim 3, further comprising a core wrap that covers at least a surface side of the absorbent in contact with the liquid-permeable sheet.
  • 7. The absorbent article according to claim 6, wherein the core wrap is adhered to the liquid-permeable sheet.
  • 8. The absorbent article according to claim 3, wherein the absorbent is disposed to be in contact with the liquid-permeable sheet, andthe absorbent is adhered to the liquid-permeable sheet.
  • 9. The water-absorbing resin particles according to claim 1, wherein the value of non-pressurization DW after 30 seconds is 2.0 mL/g or more and 15 mL/g or less.
  • 10. The water-absorbing resin particles according to claim 1, wherein the contact angle is 25 degrees or larger and 65 degrees or smaller.
  • 11. The water-absorbing resin particles according to claim 1, wherein a water absorption capacity of the water-absorbing resin particles for a physiological saline solution under a load is 15 to 35 mL/g.
  • 12. The water-absorbing resin particles according to claim 1, wherein a median particle size of the water-absorbing resin particles is 250 to 850 μm.
Priority Claims (4)
Number Date Country Kind
2018-232850 Dec 2018 JP national
2019-014521 Jan 2019 JP national
2019-055267 Mar 2019 JP national
2019-055326 Mar 2019 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2019/048817 12/12/2019 WO 00