Not applicable.
Not applicable.
Not applicable.
1. Field of Invention
This invention relates to novelty devices, specifically to water-actuated novelty devices that feature an erectile member.
2. Prior Art
Various novelty devices are known wherein the application of water causes the device to perform a mechanical function. For example, U.S. Pat. No. 4,529,569 to Palau discloses a method for making objects that expand when immersed in water. Both U.S. Pat. No. 6,389,718 to Joo and U.S. Pat. No. 5,946,835 to Boyd disclose ways of making an artificial flower that blooms when given water. And U.S. Pat. No. 4,986,531 to Snaper, et al. discloses a telescoping device that elongates when placed in water. None of these inventions, however, disclose a water-actuated flexible member that changes its state from flaccid to erect upon the application of water.
The present invention makes special use of a hydrophilic material placed inside a flexible tube. Upon absorbing water, the hydrophilic material swells; this internally pressurizes the tube, causing it to become erect. While the principle of internally pressurizing a flexible tube to induce erection is well-known in the arts, the present invention distinguishes itself by the technique used to achieve that result. For example, U.S. Pat. No. 4,574,792 to Trick discloses a penile implant that achieves erection by having a fluid pumped into it. While the penile implant requires the use of a pump, the erectile device of the present invention needs only the application of water.
One embodiment of the present invention is an artificial flower with an erectile stem. In this embodiment, a desirable feature is for the flower to be able to dispense a floral scent or other fragrance. Various inventors have sought to combine scent-dispensing mechanisms with artificial flowers. See, for example, U.S. Pat. No. 6,830,733 to Stanley, III; U.S. Pat. No. 5,077,102 to Chong; and U.S. Pat. No. 3,861,991 to Kim. However, none of these inventions describe a scent-dispensing mechanism combined with an artificial flower that has an erectile stem.
A new type of erectile device is disclosed herein. The device includes a flexible tube that contains a hydrophilic material. When the tube is partially immersed in water, the hydrophilic material swells, pressurizing the tube and causing it to become erect.
The erectile device may be shaped like a flower, or it may incorporate other shapes so as to resemble an animal, a fictional character, a nonfictional person, a fanciful creature such as a monster, or any other representation deemed desirable.
Among the chief goals of the erectile device are to provide amusement, to serve as a decorative object, and to act as a fragrance dispenser. These and other applications are described below.
General Appearance and Operation
One embodiment of the erectile device is illustrated in
Initially, the erectile device is in a drooping or flaccid state, as indicated by phantom lines in the drawing. Water 11 is added to a vase 12, and the erectile device is placed with the lower end of its erectile member in the vase. Upon absorbing the water, the erectile member becomes substantially upright or erect, as shown. Depending on the materials selected for its construction, this process can take anywhere from a number of minutes to several hours. In some embodiments discussed below, the erectile member will gradually return to a flaccid state once it has consumed all the available water; it may then be rehydrated, so that the cycle of rising and falling can be repeated indefinitely.
A decorative weight 13, in this case shaped like a flower blossom, is situated at the upper end of the erectile member. The weight ensures that the erectile member fully bends or droops when flaccid. Note that the weight need not be decorative or even visible. For example, it may be desirable in certain embodiments to conceal the weight in the upper end of the erectile member, and to color the erectile member decoratively instead of adorning it with three-dimensional features. In other embodiments wherein the weight is decorative, the weight may be shaped like a flower, as noted, or like an animal, a fictional character, a nonfictional person, a fanciful creature such as a monster, or any other representation deemed desirable.
Composition and Construction
If the flexible tube is used to represent the stem of a flower, it is contemplated that the tubing will have a diameter of about ¼ inch to ½ inch, depending on the size of the flower blossom. The material from which the flexible tube is made may be porous or non-porous, depending on the desired result. For example, let us assume that the erectile member has been hydrated using a limited supply of water (e.g., water from a vase) and is now fully upright. If the tubing is porous, the water absorbed by the erectile member will slowly evaporate through it, causing the erectile member to wilt unless rehydrated. This may be a desirable feature in certain designs. If, on the other hand, it is preferred that the erectile member remain upright for a more extended period of time, the flexible tube should be made from a non-porous material. This tends to retain the water and keep the erectile member upright.
If the flexible tube is non-porous, it may be made from any suitably flexible material, such as polychloroprene or latex tubing. If it is porous, it may be made from a woven or non-woven fabric, selected both for its flexibility and its ability to contain the hydrophilic particles when they swell. For example, in one embodiment, a ⅜-inch diameter tube may be constructed from a point-bonded, spunbond polyester fabric having a weight of about 1.25 ounces per square yard, with the largest pores or openings in the fabric being on the order of 50 to 75 microns. This fabric weight achieves a good combination of porosity and flexibility for the size of the tube (denser fabrics may be used for larger, heavier articles). The fabric in this case may be formed into a tube by methods such as heat-sealing, ultrasonic welding, or cementing a seam that runs along its length. These are preferred to sewing, which introduces needle holes through which the hydrophilic particles, when hydrated and in gel form, can leak.
The hydrophilic particles are a superabsorbent polymer such as crosslinked polyacrylamide, but other types of superabsorbent polymer can be used. In one embodiment, the particles when dry are about 1 to 3 mm in size, but particles that are larger or smaller could be used. The optimal choice depends on the size of flexible tube and the material from which it's constructed. Particles that are too large may bind against each other when dry and hinder the tube's flexibility, especially for smaller-diameter tubes; in addition, they create an unpleasant tactile sensation when the tube is handled (hard granules inside an otherwise soft article). Particles that are too small (e.g., powder-size) may leak, depending on the porosity of the flexible tubing.
The hydrophilic particles are mixed with a filler material that is designed to keep them evenly distributed. The filler material must be flexible (to allow the erectile member to bend) and must also allow water to reach the hydrophilic particles. It is found that fiberfill (a stuffing material, usually made from polyester, commonly used to fill pillows, dolls, and stuffed animals) works well for this purpose.
Wicking Means
If the erectile member is intended to be partially immersed in water (as when it represents the stem of a flower), then a wicking means is required to deliver the water to the hydrophilic particles at the upper end of the erectile member. Such a wicking means can take several forms.
Alternatively,
Yet another method of transporting water is for the flexible tube itself to serve as a wick, obviating the necessity for having a separate or discrete wick. In this case, the material from which the flexible tube is made should be porous and composed of fibers that lend themselves to wicking, such as a woven or nonwoven fabric. Yet another alternative is for the filler material (the material in which the hydrophilic particles are distributed) to serve as a wick.
Depending on the desired speed with which the erectile member is to function, the wicking means can be made from a combination of any of the above-mentioned wicking materials or means.
Whatever the wick's specific form, it may be necessary to treat it to enhance its hydrophilicity (wicking ability), depending on the material from which it's made. For example, synthetic fabrics such as polyester and polypropylene are naturally hydrophobic and need to be treated. This can be accomplished by a variety of techniques generally known as surface modification, such as plasma treatment or chemical grafting. Plasma treatment can be used by itself, or it can be used to pretreat the material in preparation for surface graft polymerization (the attachment of synthetic monomers to peroxide groups established by the plasma treatment). Generally speaking, surface graft polymerization provides a more durable, longer-lasting result than plasma treatment alone, but at greater expense. Yet another method to improve wicking ability is to use fibers whose cross-sectional shape is designed to transport moisture; such fibers have capillary-like channels that run their length, and are well-known in the field of fiber engineering.
Anti-Kinking Means
One esthetic concern in the design of the erectile member is that it should bend gracefully when flaccid, without forming an unattractive crease or kink. For example,
Alternatively,
Scent
Particularly if the erectile member is used to represent the stem of a flower, it is desirable for it to be able to dispense a floral scent or other fragrance. Such a scent can be incorporated in various ways. For example, the scent can be applied directly to the flower-shaped decorative weight 13. If the erectile member is made from a porous material, a water-soluble fragrance can be incorporated into the erectile member during manufacture (for example, scented granules can be mixed with the hydrophilic particles before they are used to fill the flexible tubing); when the erectile member is hydrated, the scented granules dissolve and the scent is released into the air evaporatively through the porous walls of the tubing. In yet another alternative, a water-soluble fragrance may be placed in vase 12. When water is introduced into the vase, the fragrance dissolves into the water, is absorbed by the erectile member, and transpires through the porous walls of the erectile member.
In one embodiment of the erectile device, the erectile member represents the stem of an artificial flower. This particular embodiment has several advantages:
Besides the flower-shaped embodiment discussed above, other shapes can be incorporated into the design to make it resemble an animal, a fictional character, a nonfictional person, a fanciful creature such as a monster, or any other representation deemed desirable.
From the foregoing discussion, it will be appreciated that among the chief goals of the erectile device are to provide amusement, to serve as a decorative object, and to act as a fragrance dispenser. Additional practical applications are also envisioned. For example, if the erectile member is inserted into soil, it can be used as an instrument to gauge the amount of moisture in the soil and thus provide a benefit to gardeners. To facilitate this application, a rigid tip can be added to the base of the erectile member to allow it to be easily inserted into soil (or into floral foam or any other semi-firm medium). Additionally, owing to the resemblance of the present invention to the male anatomy, it can be used as an educational tool to demonstrate the scientific principles underlying male physiology.
Although the descriptions above contain many specifics, they should not be construed as limiting the scope of the embodiments but as merely providing illustrations of some of the presently preferred embodiments. Thus the scope of the embodiments should be determined by the appended claims and their legal equivalents, rather than by the examples given.
Number | Name | Date | Kind |
---|---|---|---|
2507899 | Gilowitz | May 1950 | A |
3400890 | Gould | Sep 1968 | A |
3861991 | Kim | Jan 1975 | A |
4529569 | Palau | Jul 1985 | A |
4574792 | Trick | Mar 1986 | A |
4738881 | Lee | Apr 1988 | A |
4919981 | Leavey | Apr 1990 | A |
4928881 | Barlics | May 1990 | A |
4986531 | Snaper | Jan 1991 | A |
5077102 | Chong | Dec 1991 | A |
5756166 | Shinohara | May 1998 | A |
5946835 | Boyd | Sep 1999 | A |
6389718 | Joo | May 2002 | B1 |
6391398 | Pesu | May 2002 | B1 |
6503582 | Nardoza | Jan 2003 | B1 |
6830733 | Stanley | Dec 2004 | B2 |