Water amusement park water channel flow system

Information

  • Patent Grant
  • 7727077
  • Patent Number
    7,727,077
  • Date Filed
    Thursday, October 6, 2005
    19 years ago
  • Date Issued
    Tuesday, June 1, 2010
    14 years ago
Abstract
A water amusement ride system is disclosed. The system may include a device or apparatus, including a water bypass channel in fluid communication with a channel of water. The water bypass channel may include a water entrance, a water exit, and an adjustable valve. The water entrance is in fluid communication with water upstream of the apparatus. The water exit is in fluid communication with water downstream of the apparatus. The adjustable valve may be located between the water entrance and the water exit. The adjustable valve may be adjusted to control an amount of water exiting the water bypass channel. The water bypass channel may increase the flow rate of water between the water entrance and the water exit of the water bypass channel. The water bypass channel may assist in controlling a water effect.
Description
BACKGROUND

1. Field of the Invention


The present disclosure generally relates to water amusement attractions and rides. More particularly, the disclosure generally relates to jet and side control gates for controlling water flow in water amusement rides.


2. Description of the Relevant Art


The 80's decade witnessed phenomenal growth in the participatory family water recreation facility (i.e., the water park) and in water oriented ride attractions in the traditional themed amusement parks. The main current genre of water ride attractions (e.g., waterslides, river rapid rides, and log flumes, and others) require participants to walk or be mechanically lifted to a high point, wherein, gravity enables water, rider(s), and riding vehicle (if appropriate) to slide down a chute or incline to a lower elevation splash pool, whereafter the cycle repeats. Some rides can move riders uphill and downhill but for efficiency and performance reasons these rides also generally start on an elevated tower and generally require walking up steps to reach the start of the ride.


With this phenomenal growth came the subsequent problem of finding enough appropriate land available for development into water recreation facilities. One of the problems facing water park developers is finding enough land upon which to develop their water parks. The development of water parks is an expensive enterprise to which the addition of having to purchase large tracts of land only further adds to the expense of developing water parks.


Generally speaking, the traditional downhill water rides are short in duration (normally measured in seconds of ride time) and have limited throughput capacity. The combination of these two factors quickly leads to a situation in which patrons of the parks typically have long queue line waits of up to two or three hours for a ride that, although exciting, lasts only a few seconds. Additional problems like hot and sunny weather, wet patrons, and other difficulties combine to create a very poor overall customer feeling of satisfaction or perceived entertainment value in the water park experience. Poor entertainment value in water parks as well as other amusement parks is rated as the biggest problem of the water park industry and is substantially contributing to the failure of many water parks and threatens the entire industry.


Additionally, none of the typical downhill water park rides is specifically designed to transport guests between rides. In large amusement parks, transportation between rides or areas of the park may be provided by a train or monorail system, or guests are left to walk from ride to ride or area to area. Trains or monorails have relatively minor entertainment value and are passive in nature in that they have little if any active guest-controlled functions such as choice of pathway, speed of riders or rider activity besides sightseeing from the vehicle. They are also generally unsuitable for water parks because of their high installation and operating costs and have poor ambience within the parks. These types of transportation are also unsuitable for water park guests who, because of the large amount of time spent in the water, are often wet and want to be more active because of the combination of high ambient temperatures in summertime parks and the normal heat loss due to water immersion and evaporative cooling. Water helps cool guests and encourages a higher level of physical activity. Guests also want to stay in the water for fun. Water parks are designed around the original experience of a swimming hole combined with the river rafting or tubing. The preferred feeling is one of natural ambience and organic experience. A good river ride combines calm areas and excitement areas like rapids, whirlpools, and beaches. Mechanical transportation systems do not fit in well with these types of rides. There exists a need in water parks for a means of transportation through the park and between the rides.


For water rides that involve the use of a floatation device (e.g., an inner tube or floating board) the walk back to the start of a ride may be particularly arduous since the rider must usually carry the floatation device from the exit of the ride back to the start of the ride. Floatation devices could be transported from the exit to the entrance of the ride using mechanical transportation devices, but these devices are expensive to purchase and operate. Carrying the floatation device or using mechanical transportation to transport the floatation device may reduce guest enjoyment, cause excess wear and tear on the floatation devices, contribute to guest injuries, and/or make it impossible for some guests to access the rides. Also, a park that includes many different non-integrated rides may require guests to use different floatation devices for different rides, which makes it difficult for the park operators to provide the guests with a general purpose floatation device. It is advantageous to standardize riding vehicles for rides as much as possible.


Typically water parks are quite large in size. Typically guests must enter at one area and pass through a changing room area upon entering the park. Rides and picnic areas located in areas distant to the entry area are often underused in relation to rides and areas located near the entry area. More popular rides are overly filled with guests waiting in queue lines for entry. This leads to conditions of overcrowding in areas of the park which leads to guest dissatisfaction and general reduction of optimal guest dispersal throughout the park. The lack of an efficient transportation system between rides accentuates this problem in water parks.


For the reasons stated above and more, a natural and exciting water transportation system to transport participants between rides as well as between parks may be used to interconnect many diverse and stand-alone water park rides. The transportation system relieves the riders from the burden of carrying their floatation devices up to the start of a water ride. The transportation system also allows the riders to stay in the water, thus keeping the riders cool while they are transported to the start of the ride. The transportation system also may be used to transport guests from one end of a water park to the other, between rides and past rides and areas of high guest density, between water parks, or between guest facilities such as hotels, restaurants, and shopping centers. The transportation system itself may be a main attraction with exciting water and situational effects while seamlessly incorporating into itself other specialized or traditional water rides and events.


A transportation system may use sloped and/or flat water channels to transport participants. The depth and/or flow of water in these water channels may be controlled by narrowing or widening the water channels. Narrowing or widening the water channels may especially be useful in deeper water channels typically used for water amusement rides. Typically, a fast moving water section (e.g., a downhill or downhill rapids section) is located following a slow moving water section (e.g., a flat water section). The slow moving water section is typically an area used to collect and/or organize participants before they move into the fast moving water section. The fast moving water section may have a narrower cross-section so that water flows through the fast moving water section at a higher velocity.


It is important to control the water depth in the slow moving water section for several reasons. One reason is that the velocity (flow rate) and momentum of water entering the fast moving water section from the slow moving water section is dependent upon the head (depth) of water at the beginning of the fast moving water section. The depth of water at the beginning of the fast moving water section is dependent upon the depth of water in the slow moving water section.


A second reason is that the velocity of riders in the slow moving water section and upstream of the fast moving water section is determined by the width, depth, and water flow of the slow moving water section of the water channel. Typically, the width and water flow are assumed to be constant, so the velocity of the riders is mainly determined by the water depth in the slow moving water section. The water depth in the slow moving water section may be maintained at a desired level (e.g., a relatively constant level) by selectively restricting the flow of water out of the slow moving water section. A restriction in the flow of water out of the slow moving water section increases the head in the slow moving water section. This increase in head may be balanced by an increase in velocity of the water flowing past the restriction so that the water depth in the slow moving water section is maintained at the desired level. Thus, the velocity of riders in the slow moving water section may be controlled by selecting the water depth in the slow moving water section using the restriction. Selective adjustment of the restriction may be used to adjust water depth in the slow moving water section and control the velocity of riders in the slow moving water section.


Some examples of devices that are used to restrict water flow through an open channel include a sluice gate or an adjustable submerged obstruction (e.g., an adjustable weir). Sluice gates are typically unsuitable for use in water parks in which people participate due to safety reasons. Adjustable submerged obstructions are generally expensive and difficult to install in a water park and/or are unsuitable for controlling the flow of water in a water park. Adjustable side gates may be used to restrict water flow through an open channel. Adjustable side gates include moving parts that open and close into a water channel. The adjustable side gates may be manually controlled and/or actuated by mechanical means. These moving parts may be unsuitable for water parks because of safety issues involving riders in the water channel, especially for the high volume flows of water seen in water parks.


SUMMARY

In certain embodiments, a restriction in a water channel limits the amount of water flowing in the water channel. An adjustable bypass channel (e.g., a jet gate) may be used to limit the amount of water flowing in the water channel (i.e., the adjustable bypass channel is the restriction). A portion of the flow of water in the water channel may be diverted into the adjustable bypass channel. Adjusting the amount of water exiting the adjustable bypass channel adjusts the amount of water flowing in the water channel past the adjustable bypass channel. Restricting the amount of water flowing in the water channel controls the hydraulic profile of the water flowing in the channel without physically altering the width of the water channel.


In some embodiments, a bypass channel may be fixed, and a fixed bypass channel may be substituted within the context of the embodiments described herein.


In an embodiment, an adjustable bypass channel includes a water entrance, a water exit, and an adjustable valve (e.g., a butterfly valve). The water entrance is in fluid communication with water upstream of the adjustable bypass channel. The water exit is in fluid communication with water downstream of the adjustable bypass channel. The flow rate of water exiting the adjustable bypass channel may increase from the flow rate of water upstream of the adjustable bypass channel (e.g., the water may flow through a restriction that increases the velocity (flow rate) of the water in the adjustable bypass channel). The adjustable valve is located between the water entrance and the water exit. The adjustable valve may be adjusted to control an amount of water exiting the adjustable bypass channel and/or a depth of water in the water channel upstream of the adjustable bypass channel. The adjustable bypass channel may increase the flow rate of water between the water entrance and the water exit of the adjustable bypass channel.


The outer structure of the adjustable bypass channel may have fixed dimensions within the water channel. Typically, the only moving mechanical part in the adjustable bypass channel is the adjustable valve. Riders in the water channel may be inhibited from contacting any moving parts in the adjustable bypass channel.


A size of a restriction (e.g., an adjustable bypass channel) may be varied to compensate for variances in the flow of water in the water channel. For example, the flow of water may vary based on a design of a water amusement ride. The size of the restriction may be controllably varied. In certain embodiments, the size of the restriction is varied by adjusting the amount of water flowing in the water channel. A restriction in the amount of water flowing in the water channel may be controllably adjusted. The amount of water flowing in the water channel may be adjusted, for example, by adjusting an adjustable valve in an adjustable bypass channel or opening/closing adjustable gates to widen/narrow the width of the water channel.


In some embodiments, the size of a restriction is varied to change the hydraulic profile of the river (i.e., the flow of water) in a dynamic manner. The size of the restriction (e.g., the amount of water exiting an adjustable bypass channel) may be varied to partially or completely restrict the flow of water at various times during operation. The size of the restriction may be dynamically adjusted to create various sizes and/or shapes of water (e.g., waves or surges of water) in the downstream portion of the water channel. The dynamic adjustment of the size of the restriction may be used to create, for example, flash floods, river waves, or other dynamic effects.


In some embodiments, the restriction may be adjusted to completely close off the flow of water (e.g., the restriction operates as a dam). For example, an adjustable bypass channel may include inserts that may be used to completely close off the flow of water at the adjustable bypass channel. Completely closing off the flow of water may be useful during shutdown periods in a water park. During shutdown, water will run downhill along a sloping section to the lowest point in the water park. The amount of water held above base water level in the water park may be sufficient to flood lower sections of the water park during shutdown. Using a restriction to close off the flow of water in sections of the water park upstream from downhill or sloping sections may inhibit flooding in the lower sections of the water park.


In certain embodiments, restricting the flow of water in a section is used to selectively divert a portion of the flow of water through one or more alternative water channels without changing the bottom elevation of a water park river. Selectively diverting a portion of the flow of water may be used to create flows of water between loops of water and/or sections of a river in a water park between which water would not normally flow without mechanical means of moving water and riders (e.g., a conveyor). In some embodiments, selectively diverting a portion of the flow of water is accomplished with little or no dynamic alteration of the flow of water (e.g., little or no adjustment of the size of a restriction).


In some embodiments, a water ride may include a first channel of water which functions to convey participants in a first direction. A water ride may include a first adjustable flow controller positioned in the first channel of water. A water ride may include a second channel of water which functions to convey participants in a second direction different from the first direction. In certain embodiments, the second direction may be substantially opposite the first direction. A water ride may include a third channel coupling the first channel, upstream of the first adjustable flow controller, to the second channel. The first adjustable flow controller may function to control the flow of water through the third channel.


In some embodiments, a water ride may include a second adjustable flow controller positioned in the second channel of water. The third channel couples to the second channel downstream of the second adjustable flow controller. The water ride may include a fourth channel coupling the second channel, upstream of the second adjustable flow controller, to the first channel, downstream of the first adjustable flow controller. The second adjustable flow controller is configured to control the flow of water through the fourth channel.


In some embodiments, controlling the flow of water through the fourth channel may adjust a participant flow rate through the fourth channel. Controlling the flow of water through the third channel may adjust a participant flow rate through the third channel.


In some embodiments, water in the first channel upstream of the first adjustable flow controller may be at a substantially similar elevation to water in the second channel upstream of the second adjustable flow controller. Water in the first channel downstream of the first adjustable flow controller may be at a substantially similar elevation to water in the second channel downstream of the second adjustable flow controller. Water in the first channel upstream of the first adjustable flow controller may be at a higher elevation than water in the first channel downstream of the first adjustable flow controller. Water in the second channel upstream of the second adjustable flow controller may be at a higher elevation than water in the second channel downstream of the second adjustable flow controller.


In some embodiments, a first adjustable flow controller may function to control the amount of water flowing downstream of the first adjustable flow controller and the amount of water flowing through the third channel. A second adjustable flow controller may function to control the amount of water flowing downstream of the second adjustable flow controller and the amount of water flowing through the fourth channel.


In certain embodiments, a method for controlling a flow of water between two water channels in a water amusement park includes diverting at least a portion of the flow of water in a first channel of the water amusement ride into a third channel. A flow of water in the first channel may be controlled using a first adjustable flow controller to control the amount of water flowing in the first channel downstream of the first adjustable flow controller and the amount of water flowing in the third channel. At least a portion of the flow of water in a second channel of the water amusement ride may be diverted into a fourth channel. A flow of water in the second channel may be controlled using a second adjustable flow controller to control the amount of water flowing in the second channel downstream of the second adjustable flow controller and the amount of water flowing in the fourth channel. The flow of water in the water amusement ride may be controlled using the first adjustable flow controller and the second adjustable flow controller to substantially equalize the flow of water between the first channel and the second channel.


In some embodiments, two water channels may only be connected by a third channel and only the first channel may include a first adjustable flow controller. In some embodiments, a water ride may include a plurality of water channels and a plurality of interconnecting channels through which the flow of water is controlled by various adjustable flow controllers positioned in the plurality of channels.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description of the preferred embodiments and upon reference to the accompanying drawings.



FIG. 1 depicts an embodiment of a portion of a continuous water slide.



FIG. 2 depicts an embodiment of a portion of a continuous water slide.



FIG. 3 depicts an embodiment of a water amusement park.



FIG. 4 depicts a side view of an embodiment of a conveyor lift station coupled to a water ride.



FIG. 5 depicts a side view of an embodiment of a conveyor lift station with an entry conveyor coupled to a water slide.



FIG. 6 depicts a side view of an embodiment of a conveyor lift station coupled to an upper channel.



FIG. 7 depicts a perspective view of an embodiment of a portion of a water amusement ride with a slow moving water section preceding a fast moving water section.



FIG. 8 depicts a top view of the embodiment depicted in FIG. 7.



FIG. 9 depicts an embodiment of a gate.



FIG. 10 depicts an embodiment of a gate.



FIG. 11 depicts an embodiment of a gate in a water channel.



FIG. 12 depicts an embodiment of a gate in a water channel.



FIG. 13 depicts an embodiment of a gate that has no moving parts that are exposed to ride operators and/or participants in a water channel.



FIG. 14 depicts a perspective representation of an embodiment of the internal portions of an adjustable bypass channel.



FIG. 15 depicts a perspective representation of an embodiment of the internal portions of an adjustable bypass channel showing a water entrance.



FIG. 16 depicts a rear view of an embodiment of the internal portions of an adjustable bypass channel showing a water exit.



FIG. 17 depicts a side view of an embodiment of the internal portions of an adjustable bypass channel showing a water entrance and an internal opening.



FIG. 18 depicts an embodiment of a valve.



FIG. 19 depicts a perspective view of an embodiment of an adjustable bypass channel with water in a water channel.



FIG. 20 depicts a side view of an embodiment of an adjustable bypass channel with water in a water channel.



FIG. 21 depicts a top view of an embodiment of an adjustable bypass channel with water in a water channel.



FIG. 22 depicts an embodiment of a dam coupled to an adjustable bypass channel.



FIG. 23 depicts an enlarged view of a coupling between a dam and an adjustable bypass channel.



FIG. 24 depicts a representation of an embodiment for coupling two channels of water using connecting channels and adjustable bypass channels.





While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawing and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.


DETAILED DESCRIPTION

In some embodiments, a water amusement system (e.g., a water park) may include a “continuous water ride.” The continuous water ride may allow a participant using the continuous water ride to avoid long lines typically associated with many water amusement systems. Long lines and/or wait times are one of the greatest problems in the area of customer satisfaction associated with water amusement systems.


Almost all water park rides require substantial waiting periods in a queue line due to the large number of participants at the park. This waiting period is typically incorporated into the walk from the bottom of the ride back to the top, and can measure hours in length, while the ride itself lasts a few short minutes, if not less than a minute. A series of corrals are typically used to form a meandering line of participants that extends from the starting point of the ride toward the exit point of the ride. Besides the negative and time-consuming experience of waiting in line, the guests are usually wet, exposed to varying amounts of sun and shade, and are not able to stay physically active, all of which contribute to physical discomfort for the guest and lowered guest satisfaction. Additionally, these queue lines are difficult if not impossible for disabled guests to negotiate.


The concept of a continuous water ride was developed to address the problems and issues stated above associated with water amusement parks. Continuous water rides may assist in eliminating and/or reducing long queue lines. Continuous water rides may eliminate and/or reduce participants having to walk back up to an entry point of a water ride. Continuous water rides may also allow physically handicapped or physically challenged individuals to take advantage of water amusement parks by eliminating flights of stairs typically associated with water amusement parks.


In some embodiments, continuous water rides may include a system of individual water rides connected together. The system may include two or more water rides connected together. Water rides may include downhill water slides, uphill water slides, single tube slides, multiple participant tube slides, space bowls, sidewinders, interactive water slides, water rides with falling water, themed water slides, dark water rides, and/or accelerator sections in water slides. Connections may reduce long queue lines normally associated with individual water rides. Connections may allow participants to remain in the water and/or a vehicle (e.g., a floatation device) during transportation from a first portion of the continuous water ride to a second portion of the continuous water ride.


In some embodiments, an exit point of a first water ride may be connected to an entry point of a second water ride, forming at least a portion of a continuous water ride. The exit point of the first water ride and the entry point of the second water ride may be at different elevations. An elevation system may be used to connect the exit point of the first water ride and the entry point of the second water ride. In some embodiments, an entry point of a second water ride may have a higher elevation than an exit point of a first water ride coupled to the entry point of the second water ride.


In some embodiments, elevation systems may include any system capable of transporting one or more participants and/or one or more vehicles from a first point at one elevation to a second point at a different elevation. Elevation systems may include a conveyor belt system. Elevation systems may include a water lock system. Elevation systems may include an uphill water slide, a spiral transport system, and/or a water wheel.



FIG. 1 depicts an embodiment of a portion of continuous water ride 100. Continuous water ride 100 may include body of water 102A. Body of water 102A may include pools, lakes, and/or wells. Body of water 102A may be a natural body of water, an artificial body of water, or an artificially modified natural body of water. A non-limiting example of an artificially modified natural body of water might include a natural lake that has been artificially enlarged and adapted for water amusement park purposes (e.g., entry ladders and/or entry steps). Continuous water ride 100 may include downhill water slide 104. Downhill water slide 104 may convey participants from body of water 102A at a first elevation to a lower second elevation into typically some type of water container (e.g., body of water, channel, floating queue line, and/or pool). The water container at the lower second elevation may include second body of water 102B (e.g., a pool). Continuous water ride 100 may include elevation system 106. Elevation system 106 may include any system capable of safely moving participants and/or vehicles from a lower elevation to a higher elevation. Elevation system 106 is depicted as a conveyor belt system in FIG. 1. Elevation system 106 may convey participants to body of water 102C.



FIG. 2 depicts an embodiment of a portion of continuous water ride 100. Continuous water ride 100 may include body of water 102C. Body of water 102C may be coupled to downhill water slide 104. Downhill water slide 104 may couple body of water 102C to body of water 102D. Body of water 102D may be positioned at a lower elevation than body of water 102C. Body of water 102D may include access point 108A. Access point 108A may allow participants to safely enter and/or exit body of water 102D. As depicted in FIG. 2, access points 108A, 108B may be stairs. Access points 108A, 108B may also include ladders and/or gradually sloping walkways. Body of water 102D may be coupled to body of water 102C with elevation system 106. Elevation system 106, as depicted in FIG. 2, is a conveyor belt system. Elevation system 106 may be any system of elevation described herein. Body of water 102C may be coupled to a second water ride. The second water ride may be, for example, lazy river 110.



FIG. 2 depicts a non-limiting example of continuous water ride 100. Continuous water ride 100 may allow participants in vehicles 112 (e.g., inner tubes) to ride continually without having to leave their vehicle. For example a participant may enter body of water 102C through access point 108B. The participant may ride vehicle 112 down downhill water slide 104 to body of water 102D. At this point the participant may choose between exiting body of water 102D at access point 108A or riding vehicle 112 up elevation system 106 to body of water 102C. One or both ends of elevation system 106 may extend below the surface of bodies of water 102C, 102D. Extending the ends of elevation system 106 below the surface of the water may allow participants to float up on elevation system 106 more safely. Participants who choose to ride elevation system 106 to body of water 102C may then choose to either exit access point 108B, ride downhill water slide 104 again, or ride lazy river 110.


In some embodiments, bodies of water 102 may include multiple elevation systems 106 and/or multiple water rides connected to each other. In some embodiments, floating queue lines and/or channels may couple water rides and/or elevation systems to each other. Floating queue lines may more efficiently control the flow of participants between portions of a water amusement park.



FIG. 3 depicts an embodiment of a water amusement park. Water amusement park 114 depicted in FIG. 3 shows several different examples of continuous water rides 100. Continuous water rides 100 may include elevation systems 106, downhill water slides 104, and floating queue systems 116. Elevation systems 106 may include, for example, conveyor belt systems as depicted in FIG. 3. Conveyor belt systems are described in U.S. Pat. No. 7,285,053, herein incorporated by reference. This system may include a conveyor belt system positioned to allow riders to naturally float or swim up onto the conveyor and be carried up and deposited at a higher level. Downhill water slides 104 may couple elevation systems 106 to floating queue systems 116. In some embodiments, water amusement park 114 may include screens 118 and/or domes 120.


The conveyor belt system may be used to take riders and vehicles out of the water flow at stations requiring entry and/or exit from the continuous water ride. Riders and vehicles may float to and be carried up on a moving conveyor. The riders may exit the vehicles at desired locations along the conveyor belt system. New riders may enter the vehicles and be transported into the continuous water ride at the desired locations. The conveyor may extend below the surface of the water to more easily allow riders to float or swim up onto the conveyor. Extending the conveyor below the surface of the water may allow for smoother entry into the water when exiting the conveyor belt. Typically, the conveyor belt takes riders and vehicles from a low elevation to a higher elevation. The higher elevation may be higher than the elevation of the final destination. Upon reaching the higher elevation (e.g., the apex), the riders then may be transported down to their final destination on a water slide, on rollers, or on a continuation of the original conveyor that transported them to the higher elevation. This serves the purpose of using gravity to push the rider off and away from the belt, slide, or rollers into a second water ride of the continuous water ride and/or a floating queue. The endpoint of a conveyor may be near a first end of a horizontal hydraulic head channel wherein input water is introduced through a first conduit. This current of flowing water may move the riders away from the conveyor endpoint in a quick and orderly fashion so as not to cause an increase in rider density at the conveyor endpoint. Moving the riders quickly away from the conveyor endpoint may act as a safety feature that reduces the risk of riders becoming entangled in any part of the conveyor belt or its mechanisms. A deflector plate may extend from one or more ends of the conveyor to the bottom of the channel. A deflector plate extending at an angle away from the conveyor it may help to guide the riders up onto the conveyor belt as well as inhibit access to the rotating rollers underneath the conveyor. Conveyors may be designed to lift riders from one level to a higher one, or may be designed to lift riders and vehicles out of the water onto a horizontal moving platform and then return the vehicle with a new rider to the water.


The conveyor belt speed may be adjusted in accordance with several variables. The belt speed may be adjusted depending on the rider density. For example, belt speed may be increased when rider density is high to reduce rider waiting time. The speed of the belt may be varied to match the velocity of the water, reducing changes in velocity experienced by the rider moving from one medium to another (for example from a current of water to a conveyor belt). Decreasing changes in velocity is an important safety consideration because large changes in velocity may cause a rider to become unbalanced. Conveyor belt speed may be adjusted so riders are discharged at predetermined intervals, which may be important when riders are launched from a conveyor to a water ride that requires safety intervals between the riders.


Several safety concerns should be addressed in connection with the conveyor system. The actual belt of the system should be made of one or more materials designed to provide good traction to riders and vehicles without proving uncomfortable to the riders' touch. The angle at which the conveyor is disposed is an important safety consideration and should be small enough so as not to cause the riders to become unbalanced or to slide in an uncontrolled manner along the conveyor belt. Detection devices or sensors for safety purposes may also be installed at various points along the conveyor belt system. These detection devices may be variously designed to determine if any rider on the conveyor is standing or otherwise violating safety parameters. Gates may be installed at the top or bottom of a conveyor. The gates may be arranged mechanically or with sensors so that the conveyor stops when the rider collides with the gate, thereby reducing the danger of the rider being caught in and pulled under the conveyor. Runners may cover the outside edges of the conveyor belt (e.g., the space between the conveyor and the outside wall of the conveyor) so that no part of a rider may be caught in this space. All hardware (electrical, mechanical, and otherwise) should be able to withstand exposure to water, sunlight, and various chemicals associated with water treatment (including chlorine or fluorine) as well as common chemicals associated with the riders themselves (such as the various components making up sunscreen or cosmetics).


Various sensors may be installed along the conveyor belt system to monitor the number of riders and/or rider density at various points along the system. Sensors may also monitor the actual conveyor belt system for breakdowns or other problems. Problems include, but are not limited to, inoperability of all or part of the conveyor belt. All of this information may be transferred to various central or local control stations where it may be monitored so adjustments may be made to improve efficiency of transportation of the riders. Some or all of these adjustments may be automated and controlled by a programmable logic control system.


Various embodiments of the conveyor lift station include widths allowing only one or several riders side by side to ride on the conveyor according to ride and capacity requirements. The conveyor may also include entry and exit lanes in the incoming and outgoing stream to better position riders onto the conveyor belt and into the outgoing stream.


More embodiments of conveyor systems (e.g., conveyor lift stations) with conveyors 122 are shown in FIGS. 4-6. FIG. 4 shows dry conveyor 122A for transporting riders entering the system into a channel. It includes a conveyor belt portion ending at the top of downhill slide 104, which riders slide from into the water. FIG. 5 depicts wet conveyor 122B for transporting riders from lower channel 124 to a higher channel 124 via downhill slide 104. FIG. 6 shows river conveyor 122C for transporting riders from channel 124 to lazy river 110. This embodiment does not have a descending portion.


In some embodiments, an exit point of a second water ride of a continuous water ride may be coupled to an entry point of a first water ride. Coupling the exit point of the second water ride to the entry point of the first water ride may form a continuous water ride loop. The continuous water ride may include a second elevation system coupling the exit point of the second water ride to the entry point of the first water ride. The second elevation system may include any of the elevation systems described for use in coupling an exit point of the first water ride to the entry point of the second water ride. The second elevation system may be a different elevation system than the first elevation system. For example, the first elevation system may be an uphill water slide and the second water elevation system may be a conveyor belt system.


In some embodiments, a continuous water ride may include one or more floating queue lines. Floating queue lines are described in U.S. Pat. No. 7,285,053. Floating queue lines may assist in coupling different portions of a continuous water ride. Floating queue line systems may be used for positioning riders in an orderly fashion and delivering them to the start of a ride at a desired time. In certain embodiments, this system may include a channel (horizontal or otherwise) coupled to a ride on one end and an elevation system on the other end. It should be noted, however, that any of the previously described elevation systems may be coupled to the water ride by the floating queue line system. Alternatively, a floating queue line system may be used to control the flow of participants into the continuous water ride from a dry position.


Riders desiring to participate on a water ride may leave a body of water and enter a floating queue line. The floating queue line may include pump inlets and outlets similar to those in a horizontal channel, but configured to operate intermittently to propel riders along the queue line. In some embodiments, the inlet and outlet may be used to keep a desired amount of water in the queue line. In the latter case, the channel may be configured with high velocity, low volume jets that operate intermittently to deliver participants to the end of the queue line at the desired time.


In certain embodiments, the water moves participants along the floating queue line down a hydraulic gradient or bottom slope gradient. The hydraulic gradient may be produced by out-flowing the water over a weir at one end of the queue after the rider enters the ride to which the queue line delivers them, or by out-flowing the water down a bottom slope that starts after the point that the rider enters the ride. In certain embodiments, the water moves through the queue channel by means of a sloping floor. The water from the outflow of the queue line in any method can reenter the main channel, another ride or water feature, or return to the system sump. Preferably the water level and width of the queue line are minimized for water depth safety, rider control and water velocity. These factors combine to deliver the participants to the ride in an orderly and safe fashion, at the preferred speed, and with minimal water volume usage. The preferred water depth, channel width and velocity would be set by adjustable parameters depending on the type of riding vehicle, participant comfort and safety, and water usage. Decreased water depth may also be influenced by local ordinances that determine level of operator or lifeguard assistance, the preferred being a need for minimal operator assistance consistent with safety.


In some embodiments, continuous water rides may include exits or entry points at different portions of the continuous water ride. Floating queue lines coupling different portions and/or rides forming a continuous water ride may include exit and/or entry points onto the continuous water ride. Exit/entry points may be used for emergency purposes in case of, for example, an unscheduled shutdown of the continuous water ride. Exit/entry points may allow participants to enter/exit the continuous water ride at various designated points along the ride during normal use of the continuous water ride. Participants entering/exiting the continuous water ride during normal use of the ride may not disrupt the normal flow of the ride depending on where the entry/exit points are situated along the course of the ride.


In certain embodiments, a continuous water ride includes flat and/or sloped water channels (e.g., deep water channels). Water flow in these water channels may be controlled by narrowing or widening the water flow channels. In certain embodiments, sloped water channels include downhill sections or downhill rapids sections. These downhill sections may have fast moving water. Downhill sections typically follow flat or slow moving water sections in a water amusement ride. The flat or slow moving water sections may be used as call areas to arrange or organize participants before entering the fast moving water sections. For example, participants may be queued up in the slow moving water section prior to being allowed to enter the fast moving water section.



FIG. 7 depicts a perspective view of an embodiment of a portion of a water amusement ride with a slow moving water section preceding a fast moving water section. FIG. 8 depicts a top view of the embodiment depicted in FIG. 7. Water channel 124 may be part of a water amusement ride. Water channel 124 may include slow moving water section 126 and fast moving water section 128. Water in fast moving water section 128 flows at a higher velocity than water in slow moving water section 126. In certain embodiments, fast moving water section 128 has a narrower width than slow moving water section 126. Fast moving water section 128 may have a narrower width and/or a downhill slope to create a higher velocity of water in the fast moving water section.


Participants may move through water channel 124 on floatation devices 130. Floatation devices 130 may be, for example, inner tubes or other floating methods of conveyance. Slow moving water section 126 is upstream from fast moving water section 128. Participants may be queued in slow moving water section 126 before proceeding into fast moving water section 128. In certain embodiments, fast moving water section 128 is sloped. In some embodiments, a transition between slow moving water section 126 and fast moving water section 128 is sloped.


In some embodiments, an adjustable flow controller may include a side gate (e.g., side gate 132). Side gate 132 may be located at the junction of slow moving water section 126 and fast moving water section 128. Side gate 132 may be used to restrict water flow between slow moving water section 126 and fast moving water section 128. Side gate 132 may be adjustably opened and closed into water channel 124. Side gate 132 may be opened or closed to control the flow of water between slow moving water section 126 and fast moving water section 128. Side gate 132 may be opened and/or closed manually or through actuated (e.g., mechanically controlled) means. Opening or closing of side gate 132 controllably widens or narrows the width of water channel 124 at side gate 132.


Controlling the width of water channel 124 at side gate 132 controls the water depth in slow moving water section 126. Side gate 132 may be used to restrict the flow of water out of slow moving water section 126 to control the water depth in the slow moving water section. Controlling the water depth in slow moving water section 126 may be used to control the velocity of water in the slow moving water section and, thus, control the velocity of participants in the slow moving water section.


In certain embodiments, side gate 132 is opened and/or closed to adjust the hydraulic profile of water in fast moving water section 128. Side gate 132 may be opened and/or closed to adjust the size and/or shape of waves in fast moving water section 128. In some embodiments, side gate 132 is opened and/or closed to create flash flood, river waves, or other dynamic effects.


In some embodiments, side gate 132 is used to completely close off water channel 124. Thus, side gate 132 may be used as a dam in water channel 124. For example, side gate 132 may be used to completely close off flow in water channel 124 during shut down periods of the water amusement ride. Using side gate 132 to dam off flow in water channel 124 may inhibit all of the water in the water channel from flowing downhill to a lower point in the water amusement ride. Holding water in the upper portions of the water amusement ride inhibits lower portions of the water amusement ride from flooding when the ride is shut down.



FIGS. 9 and 10 depict embodiments of side gate 132. Side gate 132 includes outer casing 134 and inner casing 136. Inner casing 136 may slide back and forth within outer casing 134. Guides 138 may guide movement of inner casing 136 within outer casing 134. Guides 138 may be, for example, protrusions or strips that slide within grooves on the inner wall of outer casing 134. Inner casing 136 may include one or more access hatches 140. Access hatches 140 may allow for access to internal portions of inner casing 136. Access to internal portions of inner casing 136 may be needed for maintenance and/or repair of side gate 132. Side gate 132 may include base plate 142. Base plate 142 may be used to couple or attach side gate 132 to the walls of a water channel. Side gate 132 may be cast into the concrete of a water channel to affix the gate into the water channel.



FIGS. 11 and 12 depict an embodiment of side gate 132 in water channel 124. Inner casing 136 may move back and forth in water channel 124 along track 144 to open or close side gate 132. Track 144 may be a groove that guides movement of inner casing 136 back and forth. Inner casing 136 may include track car 146 to follow track 144. Track car 146 may remain in track 144 during movement of inner casing 136. Movement back and forth of inner casing 136 opens and closes water flow in water channel 124. Side gate 132 may include piston 148. Piston 148 may be used to move inner casing 136 back and forth to open or close side gate 132. In some embodiments, piston 148 is a hydraulic piston. A portion of side gate 132 may be slurried or cemented into the wall of water channel 124 to affix the gate into place in the water channel. For example, portions of outer casing 134 may be slurried or cemented into place in the wall of water channel 124.


In FIGS. 7-12, side gate 132 is depicted as a side opening gate that opens and closes mechanically into water channel 124. Such side opening gates have moving parts that protrude into the water channel and may come into contact with participants and/or ride operators. In certain embodiments, it may be safer and more preferable to control the flow of water in a water channel without the use of moving parts that can contact participants and/or ride operators. Eliminating contact with moving parts may be particularly needed in water amusement rides with high water velocities and/or gates that operate dynamically to adjust the flow of water in a water channel.



FIG. 13 depicts an embodiment of an adjustable flow controller (e.g., jet gate 150) that has no moving parts exposed to ride operators and/or participants in water channel 124. Jet gate 150 includes adjustable bypass channel 152 into which a portion of water flowing in water channel 124 is diverted. Adjustable bypass channel 152 may be located on one or both sides of water channel 124. Adjustable bypass channel 152 may be located at a junction of a slow moving water section and a fast moving water section.


In some embodiments, a water ride may include a channel. The channel may function to convey participants and/or participant vehicles through a portion of the water ride. The channel may include a first channel section and a second channel section. A channel may include a restriction positioned between the first and second channel sections. The restriction may be downstream of the first channel section. The restriction may function to provide a water effect in and/or downstream of the restriction. Water effects may include, but are not limited to, rapids, waves, fluid jets, and/or whirlpools. The adjustable bypass channel may function to control (e.g., enhance) the water effect.


Adjustable bypass channel 152 may have water entrance 154. Water entrance 154 allows water to enter adjustable bypass channel 152. Water entrance 154 may be coupled to a first channel section. Grates 156 may be located at water entrance 154. Grates 156 may inhibit humans and/or debris from entering adjustable bypass channel 152 while allowing water to flow through the grates and into the adjustable bypass channel. In certain embodiments, grates 156 have 50% or greater transmission area (open flow area versus overall area). Upper surface 158 of water entrance 154 may be solid so that water flows through grates 156 only. Grates 156 may have a height such that upper surface 158 remains above the water line during operation of water channel 124.


Grates 156 may be coupled to water entrance 154 using angles (e.g., stainless steel angles) with bolts or other fasteners suitable for operation in an aqueous environment. Grates 156 may also be coupled to the floor of water channel 124 using, for example, angles or other fasteners. Upper surface 158 of water entrance 154 may include solid materials such as, but not limited to, glass, foam, sheet metal, plastic, or wood. Upper surface 158 may be coupled to the walls of water channel 124 with, for example, angle irons so that personnel may stand on the upper surface during operation of the water ride. A rounded (non-sharp) joint may also be made between upper surface 158 and grates 156 so that no sharp edges exist at the joint of the upper surface and the grates.


One or more baffles 160 may be positioned in water entrance 154 behind grates 156. In some embodiments, baffles 160 may be formed as part of water entrance 154 or main bypass body 162. In certain embodiments, baffle 160 may include one or more separate pieces coupled to main bypass body 162. Baffle 160 may include one or more openings 164 of various sizes and/or shapes. The size of openings 164 may be adjusted to control the velocity and/or amount of water entering adjustable bypass channel 152. In certain embodiments, the velocity of water entering adjustable bypass channel 152 is maintained below a selected value (e.g., a value selected to be within specified code requirements for the water amusement ride) or within a range of values. Baffle 160 and openings 164 may be used to substantially equalize flow in water entrance 154. Water velocity entering water entrance 154 may be unbalanced because of water entering at different distances from main bypass body 162. The size, number, and/or location of openings 164 on baffle 160 may be adjusted to substantially equalize the flow of water into main bypass body 162. The size, number, and/or location of openings 164 may be determined through mathematical calculations and/or field testing of baffle 160.


Adjustable bypass channel 152 may include a restriction (e.g., a valve) that controls the flow of water through the adjustable bypass channel to control the amount of water exiting the adjustable bypass channel. In some embodiments, water exiting the adjustable bypass channel may exit into the second channel section. Water exiting adjustable bypass channel 152 may be at a higher velocity than water entering the adjustable bypass channel so that the velocity of water exiting the adjustable bypass channel more closely matches the velocity of water in a fast moving water section downstream of the adjustable bypass channel. Adjustable bypass channel 152 may be used in a similar manner to a side gate to restrict and control the flow of water through water channel 124 to control the water level in a slow moving water section upstream of the gate and/or control the hydraulic profile of water in a fast moving water section downstream of the gate.


The external parts of adjustable bypass channel 152 may contribute to a theme for a water amusement ride. For example, the external parts may represent a rock theme. One or more external edges of adjustable bypass channel 152 may be rounded so that the adjustable bypass channel has no sharp edges. The external covers of adjustable bypass channel 152 may be internally flanged to provide rigidity and joining surfaces for the parts.



FIGS. 14-18 depict embodiments of internal portions of adjustable bypass channel 152. The internal portions of adjustable bypass channel 152 depicted in FIGS. 14-18 may be located within a structure that inhibits participants from coming into contact with the internal portions and/or inhibits operators of the water ride from accessing the internal portions during operation of the water ride. Adjustable bypass channel 152 may include one or more access panels that may be removed during non-operating times of the water ride. These access panels may be removed by certified personnel (e.g., ride operators and/or ride mechanics) when it is safe to access the internal portions of adjustable bypass channel 152 (e.g., during shutdown periods of the water ride). Certain internal portions of adjustable bypass channel 152 may include one or more safety grates. Safety grates may include bar grates or other access inhibitors that allow water flow but inhibit human access during operation of adjustable bypass channel 152. These safety grates may be located away from any operating parts within adjustable bypass channel 152 to inhibit human access to the operating parts during operation.



FIG. 14 depicts a perspective representation of an embodiment of internal portions of adjustable bypass channel 152. Adjustable bypass channel 152 includes water entrance 154 and water exit 166. Water enters adjustable bypass channel 152 through water entrance 154. Water exits adjustable bypass channel 152 through water exit 166. Water entrance 154 may be in fluid communication with a slow moving water section of water channel 124. Water may flow through water entrance 154 into main bypass body 162. Valve 168 may be located in main bypass body 162. Valve 168 may control the flow of water through adjustable bypass channel 152. Valve 168 may be an adjustable valve. In certain embodiments, valve 168 is an adjustable butterfly valve, as shown in FIG. 18. Valve 168 may be used to control the amount of water flowing out of adjustable bypass channel 152. Blades 170 of valve 168 may close against stops 172 to inhibit water flow through adjustable bypass channel 152. Stops 172 may be coupled to or be formed as part of main bypass body 162. In certain embodiments, stops may also be located on the bottom of main bypass body 162 to seal against blades 170 of valve 168 and further inhibit flow when the valve is closed. Water exit 166 may be in fluid communication with a fast moving water section of water channel 124.


In certain embodiments, one or more spacers, pads, or other protrusions may be coupled to the outside of main bypass body 162. These spacers or pads may be added to main bypass body 162 to adjust the width of the channel of water flowing past adjustable bypass channel 152. The spacers or pads may be rounded, flat, or other shapes. The spacers or pads may be made of material that is water resistant and may reduce impact forces on objects (e.g., participants or floatation devices) that may contact the spacers or pads. The spacers or pads may be coupled to main bypass body 162 by screws, bolts, or other fasteners. The number, width, or size of the spacers or pads may be adjusted by personnel associated with operation of water channel 124 to adjust the width of the water channel at adjustable bypass channel 152.



FIG. 15 depicts a perspective representation of an embodiment of the internal portions of adjustable bypass channel 152 showing water entrance 154. The size of water entrance 154 may be adjusted to adjust the amount of water diverted into adjustable bypass channel 152. For example, water entrance 154 may be sized to divert about 25% of the water in water channel 124 into adjustable bypass channel 152. The amount of water diverted into adjustable bypass channel 152 may be adjusted to accommodate, for example, variable flow rates in water channel 124, varying widths of the water channel, or varying water depths of the water channel.



FIG. 16 depicts a perspective representation of an embodiment of the internal portions of adjustable bypass channel 152 showing water exit 166. Water exit 166 may be formed as a portion of main bypass body 162. Water exit 166 may be sized to control the flow of water out of adjustable bypass channel 152. The size of water exit 166 along with the head of water upstream of adjustable bypass channel 152 controls the flow through the exit of the adjustable bypass channel. In certain embodiments, water exit 166 is sized to allow a selected value of full flow for a maximum value of head of water upstream of adjustable bypass channel 152. In some embodiments, one or more inserts may be coupled to water exit 166 to adjust the size of the opening. For example, inserts may be coupled to water exit 166 during shutdown times of the water ride.


In certain embodiments, a baffle may be coupled to an upper lip of water exit 166 and extend into main bypass body 162 at an upwardly sloping angle (e.g., an upward angle of about 45°). The baffle may produce a smoother flow of water through water exit 166. The baffle may also inhibit human entrapment above the baffle. A safety grate may be coupled to the baffle to inhibit human access during operation of adjustable bypass channel 152.


Other openings within main bypass body 162 may be sized (e.g., made as large as possible) so that the other openings provide little or no effect on the exit flow of water from adjustable bypass channel 152. FIG. 17 depicts a side view of an embodiment of the internal portions of adjustable bypass channel 152 showing water entrance 154 and internal opening 174. Internal opening 174 allows water from water entrance 154 to enter main bypass body 162. Internal opening 174 may have a size that provides little or no resistance to water flow in adjustable bypass channel 152.



FIG. 18 depicts an embodiment of valve 168. Valve 168 may include brackets 176. Brackets 176 may be used to couple valve 168 to a wall of water channel 124. Valve 168 may have body 178 and actuator 180. Brackets 176 may be coupled to actuator 180. Actuator 180 may remain above the water line in adjustable bypass channel 152. Actuator 180 may be an electrically operated actuator or a manually (mechanically) operated actuator. Operating parts of actuator 180 may be enclosed in a watertight box. Body 178 may include blades 170. Blades 170 may be sized so that at least some portion of the blades remain above the water line for varying depths of water caused by opening and/or closing of valve 168. Blades 170 may be rotatable over 90° using actuator 180. The 90° of rotation allows blades 170 to be set at angles between fully open (full flow through adjustable bypass channel 152) or closing flow off by contacting the blades against stops 172 of main bypass body 162 (shown in FIG. 14). Stops 172 may be made of flexible and strong sealing material that inhibits 95% or more flow of water when blades 170 contact the stops. The material of stops 172 may also inhibit banging or bouncing when blades 170 contact the stops.


Water exiting adjustable bypass channel 152 is at a higher velocity than water entering the adjustable bypass channel. Adjustment of valve 168 controls the amount of water exiting adjustable bypass channel 152. Thus, the total water flow from upstream of adjustable bypass channel 152 to downstream of the adjustable bypass channel is controlled. Adjustment of valve 168 also controls the head (level) of water upstream of adjustable bypass channel 152. In some embodiments, valve 168 may be the only moving part of adjustable bypass channel 152. Valve 168 is shielded from contact by participants and/or other human access during operation of adjustable bypass channel 152. Adjustable bypass channel 152 provides an effective way of controlling water flow in water channel 124 while substantially removing the risk of contacting participants with moving parts in the water channel.


In certain embodiments, valve 168 may be operated to vary the size and/or shape of waves downstream of adjustable bypass channel 152. Valve 168 may be operated to create hydraulic effects such as flash floods, river waves, or other dynamic water effects. In some embodiments, valve 168 may be alternately closed and opened to store and release water and send surges of water downstream from adjustable bypass channel 152 to achieve various hydraulic effects. Actuator 180 of valve 168 may have controls and power sufficient to open and close the valve quickly during operation to produce surges of water.



FIG. 19 depicts a perspective view of an embodiment of adjustable bypass channel 152 with water in water channel 124. FIG. 20 depicts a side view of an embodiment of adjustable bypass channel 152 with water in water channel 124. FIG. 21 depicts a top view of an embodiment of adjustable bypass channel 152 with water in water channel 124. Adjustable bypass channel 152 may be located at a junction of slow moving water section 126 and fast moving water section 128. Water may have a selected depth in slow moving water section 126 that is controlled by adjustable bypass channel 152. Slow moving water section 126 is typically flat and horizontal. Fast moving water section 128 may slope downward from slow moving water section 126. In some embodiments, fast moving water section 128 slopes downward at about 3.5° from flat, horizontal slow moving water section 126. The exit section of adjustable bypass channel 152 may be angled downward to accommodate (e.g., approximately conform to) the slope of fast moving water section 128. The slope may begin at a section of water channel 124 where the wall turns 90° at adjustable bypass channel 152.


In certain embodiments, inserts (e.g., stops or dam logs) may be coupled to adjustable bypass channel 152 to dam off water flow in water channel 124. FIG. 22 depicts an embodiment of a dam coupled to adjustable bypass channel 152. Dam 182 may be coupled to adjustable bypass channel 152. Dam 182 may include one or more inserts that are coupled to adjustable bypass channel 152.



FIG. 23 depicts an enlarged view of a coupling between dam 182 and adjustable bypass channel 152. Dam 182 may include inserts that are inserted into groove 184 on adjustable bypass channel 152, as shown in FIG. 23. Dam 182 may be used to close off water flow in water channel 124 during shutdown periods or off hours of operation of the water channel. Dam 182 inhibits water flow to lower elevations of water channel 124 as described herein. Dam 182 may not close off 100% of the flow of water as some water may be allowed to flow past the dam (e.g., filtration water may flow during shutdown and flow through the water channel).


Inserts used in dam 182 may be made of slightly negatively buoyant material. Wood is typically not used externally for the inserts due to sanitary reasons in water channel 124. If the inserts are buoyant, the inserts may be locked down. For example, the inserts may interlock to each other horizontally, to adjustable bypass channel 152, and/or to the floor of water channel 124.


In some embodiments, adjustable bypass channel 152 is used to restrict the flow of water in a water channel so that water may be selectively routed to another water channel through a connecting channel without changing elevation of the water between channels. An adjustable bypass channel may be used to restrict the flow of water and divert the water without using mechanical means of moving water and/or guests between the rivers (e.g., conveyors).


In some embodiments, a water ride may include a first channel of water which functions to convey participants in a first direction. A water ride may include a first adjustable flow controller positioned in the first channel of water. A water ride may include a second channel of water which functions to convey participants in a second direction different from the first direction. In certain embodiments, the second direction may be substantially opposite the first direction. A water ride may include a third channel coupling the first channel, upstream of the first adjustable flow controller, to the second channel. The first adjustable flow controller may function to control the flow of water through the third channel.


In some embodiments, a water ride may include a second adjustable flow controller positioned in the second channel of water. The third channel couples to the second channel downstream of the second adjustable flow controller. The water ride may include a fourth channel coupling the second channel, upstream of the second adjustable flow controller, to the first channel, downstream of the first adjustable flow controller. The second adjustable flow controller is configured to control the flow of water through the fourth channel.



FIG. 24 depicts a representation of an embodiment for coupling two channels of water using connecting channels and adjustable flow controllers (e.g., adjustable bypass channels). First channel of water 124A is coupled to second channel 124B with third and fourth channels 124C and 124D. Participants may move between channels 124A, 124B using channels 124C, 124D. In certain embodiments, participants may move from first channel 124A to second channel 124B using third channel 124C. Participants may move from second channel 124B to first channel 124A using fourth channel 124D.


First adjustable flow controller 152A may be used to control the flow of water in first channel 124A. Second adjustable flow controller 152B may be used to control the flow of water in second channel 124B. A portion of water in first channel 124A may be diverted to third channel 124C. Similarly, a portion of water in second channel 124B may be diverted to fourth channel 124D. In certain embodiments, water is diverted upstream of adjustable flow controllers 152A, 152B. Adjustable flow controllers 152A, 152B may be used to control the amount of water diverted into channels 124C, 124D. The amount of water diverted to channels 124C, 124D and/or the amount of water flowing downstream of the adjustable flow controller may be adjusted by controlling the flow of water using adjustable flow controllers 152A, 152B.


Adjustable flow controllers 152A, 152B may be used to control the depths of water both downstream and upstream of the adjustable flow controllers. In certain embodiments, water upstream of adjustable flow controllers 152A, 152B is at a higher elevation than water downstream of the adjustable flow controllers. The sections of channels 124A, 124B downstream of adjustable flow controllers 152A, 152B may be at a substantially similar elevation. Similarly, the sections of water channels 124A, 124B upstream of adjustable flow controllers 152A, 152B may be at a substantially similar elevation. In some embodiments, the downstream and/or upstream sections of channels 124A, 124B are at different elevations. Adjustable flow controllers 152A, 152B may be used to control the flow of water in channels 124A, 124B and channels 124C, 124D to maintain water depths in the water channels so that water flow is substantially equalized between the water channels. Substantially equalizing the flow between channels 124A, 124B allows water to flow openly between the channels of water (e.g., channels 124A, 124B and channels 124C, 124D). Thus, an interconnecting open channel flow system is created between second channel 124A and first channel 124B using channels 124C, 124D.


In some embodiments, a first channel of water may include a first portion at a higher elevation, a second portion at a lower elevation, and a first adjustable flow controller positioned between the first and second portions. A second channel of water may include a third portion at a higher elevation, a fourth portion at a lower elevation, and a second adjustable flow controller positioned between the third and fourth portions. A fourth channel may couple the third portion of the second channel, upstream of the second adjustable flow controller, to the second portion of the first channel, downstream of the first adjustable flow controller. A third channel may couple the first portion of the first channel, upstream of the first adjustable flow controller, to the fourth portion of the second channel, downstream of the second adjustable flow controller.


In some embodiments, controlling the flow of water through the fourth channel may adjust a participant flow rate through the fourth channel. Controlling the flow of water through the third channel may adjust a participant flow rate through the third channel.


In some embodiments, water in the first channel upstream of the first adjustable flow controller may be at a substantially similar elevation to water in the second channel upstream of the second adjustable flow controller. Water in the first channel downstream of the first adjustable flow controller may be at a substantially similar elevation to water in the second channel downstream of the second adjustable flow controller. Water in the first channel upstream of the first adjustable flow controller may be at a higher elevation than water in the first channel downstream of the first adjustable flow controller. Water in the second channel upstream of the second adjustable flow controller may be at a higher elevation than water in the second channel downstream of the second adjustable flow controller.


In some embodiments, a first adjustable flow controller may function to control the amount of water flowing downstream of the first adjustable flow controller and the amount of water flowing through the third channel. A second adjustable flow controller may function to control the amount of water flowing downstream of the second adjustable flow controller and the amount of water flowing through the fourth channel.


In some embodiments, a water ride comprises a continuous water ride. The water ride may be part of a water amusement system.


An adjustable flow controller may include any device or system of devices which adjust a flow of water through a portion of a body of water (e.g., a channel). In some embodiments, an adjustable flow controller may include, but is not limited to, a positionable gate, weir, positionable weir, an adjustable bypass channel, a jet gate, and/or an adjustable valve.


In some embodiments, a water ride may include an automated control system functioning to control the first and/or second adjustable flow controller.


In certain embodiments, several connecting channels and/or several adjustable bypass channels may be used to interconnect two or more water channels in an open channel flow system. For example, two water channels may be interconnected by four, six, or eight interconnecting channels with adjustable bypass channels located at or near each interconnecting channel to control the flow of water between water channels. In some embodiments, three or more water channels are interconnected using connecting channels. Adjustable bypass channels may be used to control the flow of water in the water channels so that the three or more water channels are interconnected in an open channel flow system.


In this patent, certain U.S. patents, U.S. patent applications, and other materials (e.g., articles) have been incorporated by reference. The text of such U.S. patents, U.S. patent applications, and other materials is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents, U.S. patent applications, and other materials is specifically not incorporated by reference in this patent.


Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.

Claims
  • 1. A water ride, comprising: a first channel of water configured to convey participants in a first direction;a first adjustable flow controller positioned in the first channel of water;a second channel of water configured to convey participants in a second direction different from the first direction;a third channel coupling the first channel, upstream of the first adjustable flow controller, to the second channel, wherein the third channel is configured to convey participants from the first channel of water to the second channel of water when the first adjustable flow controller is activated; andwherein the first adjustable flow controller is configured to control the flow of water through the third channel such that as the first adjustable flow controller reduces the flow of water through the first channel and the flow of water in the third channel is increased such that participants being conveyed through the first channel are increasingly redirected through the third channel of the water ride.
  • 2. The water ride of claim 1, further comprising a second adjustable flow controller positioned in the second channel of water.
  • 3. The water ride of claim 1, further comprising a second adjustable flow controller positioned in the second channel of water, wherein the third channel couples to the second channel downstream of the second adjustable flow controller.
  • 4. The water ride of claim 1, further comprising: a second adjustable flow controller positioned in the second channel of water, wherein the third channel couples to the second channel downstream of the second adjustable flow controller; anda fourth channel coupling the second channel, upstream of the second adjustable flow controller, to the first channel, downstream of the first adjustable flow controller.
  • 5. The water ride of claim 1, further comprising: a second adjustable flow controller positioned in the second channel of water, wherein the third channel couples to the second channel downstream of the second adjustable flow controller; anda fourth channel coupling the second channel, upstream of the second adjustable flow controller, to the first channel, downstream of the first adjustable flow controller, wherein the second adjustable flow controller is configured to control the flow of water through the fourth channel.
  • 6. The water ride of claim 1, wherein the second direction is substantially opposite of the first direction.
  • 7. The water ride of claim 1, wherein controlling the flow of water through the third channel adjusts a participant flow rate through the third channel.
  • 8. The water ride of claim 1, wherein water in the first channel upstream of the first adjustable flow controller is at a higher elevation than water in the first channel downstream of the first adjustable flow controller.
  • 9. The water ride of claim 1, wherein the first adjustable flow controller is configured to control the amount of water flowing downstream of the first adjustable flow controller and the amount of water flowing through the third channel.
  • 10. The water ride of claim 1, wherein the water ride comprises a continuous water ride.
  • 11. The water ride of claim 1, wherein the water ride is part of a water amusement system.
  • 12. The water ride of claim 1, wherein the first adjustable flow controller comprises a positionable gate.
  • 13. The water ride of claim 1, wherein the first adjustable flow controller comprises a weir.
  • 14. The water ride of claim 1, wherein the first adjustable flow controller comprises a positionable weir.
  • 15. The water ride of claim 1, wherein the first adjustable flow controller comprises an adjustable bypass channel.
  • 16. The water ride of claim 1, wherein the first adjustable flow controller comprises a jet gate.
  • 17. The water ride of claim 1, wherein the first adjustable flow controller comprises an adjustable valve.
  • 18. The water ride of claim 1, further comprising an automated control system configured to control the first adjustable flow controller.
  • 19. A water ride, comprising: a first channel of water configured to convey participants in a first direction;a first adjustable flow controller positioned in the first channel of water;a second channel of water configured to convey participants in a second direction different from the first direction;a second adjustable flow controller positioned in the second channel of water;a third channel coupling the first channel, upstream of the first adjustable flow controller, to the second channel, downstream of the second adjustable flow controller, wherein the third channel is configured to convey participants from the first channel of water to the second channel of water when the first adjustable flow controller is activated; anda fourth channel coupling the second channel, upstream of the second adjustable flow controller, to the first channel, downstream of the first adjustable flow controller, wherein the fourth channel is configured to convey participants from the second channel of water to the first channel of water when the first adjustable flow controller is activated;wherein the first adjustable flow controller is configured to control the flow of water through the third channel such that as the first adjustable flow controller reduces the flow of water through the first channel and the flow of water in the third channel is increased such that participants being conveyed through the first channel are increasingly redirected through the third channel of the water ride, and wherein the second adjustable flow controller is configured to control the flow of water through the fourth channel such that as the second adjustable flow controller reduces the flow of water through the second channel and the flow of water in the fourth channel is increased such that participants being conveyed through the second channel are increasingly redirected through the fourth channel of the water ride.
  • 20. A method for controlling a flow of water between two channels in a water amusement park, comprising: diverting at least a portion of a flow of water in a first channel of a water amusement ride into a second channel through a third channel coupling the first channel and the second channel; andcontrolling the flow of water through a first adjustable flow controller positioned in the first channel, wherein controlling the flow of water through the first adjustable flow controller controls the portion of the flow of water diverted from the first channel to the second channel though the third channel, wherein the third channel is configured to convey participants from the first channel of water to the second channel of water when the first adjustable flow controller is activated, and wherein the percentage of participants conveyed through the third channel is proportional to the portion of the flow of water diverted through the third channel.
  • 21. The method of claim 20, further comprising dynamically adjusting the amount of water that exits the first adjustable flow controller to create various sizes and/or shapes of water flow downstream of the first adjustable flow controller.
  • 22. The method of claim 20, wherein controlling the flow of water through the first adjustable flow controller adjusts a participant flow rate through the third channel.
  • 23. The method of claim 20, further comprising controlling the first adjustable flow controller using an automated control system.
PRIORITY CLAIM

This patent application claims priority to U.S. Provisional Patent Application Ser. No. 60/705,298 entitled “JET AND SIDE CONTROL GATES” filed on Aug. 3, 2005, and to U.S. Provisional Patent Application Ser. No. 60/717,568 entitled “WATER AMUSEMENT PARK WATER BYPASS CHANNEL AND CHANNEL FLOW ADJUSTMENT SYSTEM” filed on Sep. 15, 2005, the disclosures of which are hereby incorporated by reference.

US Referenced Citations (431)
Number Name Date Kind
193516 Johns Jul 1877 A
419860 Libbey Jan 1890 A
435227 Inglis Aug 1890 A
485624 Gardner Nov 1892 A
536441 Morris Mar 1895 A
540715 Butler Jun 1895 A
548256 Idler Oct 1895 A
552713 Lenox Jan 1896 A
555049 Ogilbe Feb 1896 A
566182 Jackman Aug 1896 A
570016 Harman Oct 1896 A
572426 Idler Dec 1896 A
576704 Urch Feb 1897 A
583121 Pattee May 1897 A
604164 Wilde et al. May 1898 A
610548 Manny Sep 1898 A
640439 Boyton Jan 1900 A
654980 Howard Jul 1900 A
664179 Schofield Dec 1900 A
665765 Thompson Jan 1901 A
689114 Pape Dec 1901 A
691353 Carpenter et al. Jan 1902 A
697202 Donne Apr 1902 A
697891 Schrader Apr 1902 A
714717 LaPorte Dec 1902 A
720014 Folks Feb 1903 A
724040 Pusterla Mar 1903 A
724757 Symonds Apr 1903 A
728303 Roltair May 1903 A
728894 Folks May 1903 A
741964 Harlan Oct 1903 A
743968 Wilson Nov 1903 A
744880 Smith Nov 1903 A
753311 Pusterla Mar 1904 A
753449 Thompson Mar 1904 A
754698 Reed Mar 1904 A
757286 Du Clos Apr 1904 A
760503 Welsh May 1904 A
762566 Webster et al. Jun 1904 A
764675 Pfeiffer Jul 1904 A
774209 Stubbs Nov 1904 A
774274 Pusterla Nov 1904 A
774917 Maguire Nov 1904 A
776936 Pusterla Dec 1904 A
779464 Bruce Jan 1905 A
783425 Folks Feb 1905 A
792422 Kelly Jun 1905 A
801945 Welsh Oct 1905 A
808487 Stahl Dec 1905 A
824436 Pester Jun 1906 A
828689 Thompson Aug 1906 A
831149 Faller Sep 1906 A
849970 Boyton Apr 1907 A
868736 Washington Oct 1907 A
879283 Mayberry et al. Feb 1908 A
883441 Andrews Mar 1908 A
891388 Visser et al. Jun 1908 A
896940 Rosen Aug 1908 A
904848 DeVore Nov 1908 A
929972 M'Giehan Aug 1909 A
931863 Haight Aug 1909 A
952673 Karr Mar 1910 A
1004174 Kavakos Sep 1911 A
1056929 Navarro Mar 1913 A
1062838 Miller May 1913 A
1063949 Bedient Jun 1913 A
1095965 Glazier May 1914 A
1124950 Reagen et al. Jan 1915 A
1158295 Rodriguez Oct 1915 A
1159519 Menier Nov 1915 A
1167993 Guzendorfer Jan 1916 A
1195707 Miller Aug 1916 A
1198749 Myers Sep 1916 A
1230559 Burke Jun 1917 A
1249455 Myers Dec 1917 A
1320124 Chrul Oct 1919 A
1378635 Unger May 1921 A
1399469 Cucullu Dec 1921 A
1417570 Ridgway May 1922 A
1440661 Dickinson Jan 1923 A
1441126 Sherman et al. Jan 1923 A
1448306 Lezert Mar 1923 A
1497754 Howard Jun 1924 A
1520217 Auperl Dec 1924 A
1540635 Kohl Jun 1925 A
1551249 Held Aug 1925 A
1563855 Held Dec 1925 A
1591566 Schmidt et al. Jul 1926 A
1601483 Vaszin Sep 1926 A
1606024 Gorhum et al. Nov 1926 A
1606854 Vaszin Nov 1926 A
1607771 Miller Nov 1926 A
1609922 Wiig Dec 1926 A
1648196 Rohmer Nov 1927 A
1763976 Lippincott Jun 1930 A
1783268 Traver Dec 1930 A
1849226 Erban Mar 1932 A
1859267 Kurz May 1932 A
1893167 Glagolin Jan 1933 A
1926780 Lippincott Sep 1933 A
2064035 Rynearson Dec 1936 A
2146631 Kish Feb 1939 A
2484466 Rumler Oct 1949 A
2705144 Ridgway Mar 1955 A
2738885 Demaline Mar 1956 A
2888205 Trucco May 1959 A
D190127 Fowler Apr 1961 S
2991726 Miller Jul 1961 A
3000017 Skovira Sep 1961 A
3003430 Hamel Oct 1961 A
3030895 Hamel Apr 1962 A
3113528 Morgan et al. Dec 1963 A
3114333 Fowler et al. Dec 1963 A
3116925 Welch Jan 1964 A
D204282 Morgan Apr 1966 S
3302413 Burnett Feb 1967 A
3390640 Couttet et al. Jul 1968 A
3404635 Bacon et al. Oct 1968 A
3456943 Brown Jul 1969 A
3473334 Dexter Oct 1969 A
3508405 Koch Apr 1970 A
3534413 Plasseraud Oct 1970 A
3598402 Frenzl Aug 1971 A
3690265 Horibata Sep 1972 A
D229354 Morgan Nov 1973 S
3827387 Morgan Aug 1974 A
3830161 Bacon Aug 1974 A
3853067 Bacon Dec 1974 A
3861514 Ling Jan 1975 A
3865041 Bacon Feb 1975 A
3890655 Mathis Jun 1975 A
3913332 Forsman Oct 1975 A
3923301 Myers Dec 1975 A
3930450 Symons Jan 1976 A
3956779 Jewett May 1976 A
4001899 Mathis Jan 1977 A
4063517 Nardozzi, Jr. Dec 1977 A
4073722 Grutsch Feb 1978 A
4149469 Bigler Apr 1979 A
4149710 Rouchard Apr 1979 A
4175361 Kumode Nov 1979 A
4194733 Whitehouse, Jr. Mar 1980 A
4196900 Becker et al. Apr 1980 A
4198043 Timbes et al. Apr 1980 A
4205785 Stanley Jun 1980 A
4221170 Koudelka Sep 1980 A
4225953 Simon et al. Sep 1980 A
4278247 Joppe et al. Jul 1981 A
4299171 Larson Nov 1981 A
4305117 Evans Dec 1981 A
4337704 Becker et al. Jul 1982 A
4376404 Haddad Mar 1983 A
D269082 Spieldiener May 1983 S
4391201 Bailey Jul 1983 A
4392434 Dürwald et al. Jul 1983 A
4423864 Wiik Jan 1984 A
4429867 Barber Feb 1984 A
4484739 Kreinbihl et al. Nov 1984 A
4484836 Bailard Nov 1984 A
4501434 Dupuis Feb 1985 A
4516943 Spieldiener et al. May 1985 A
4543886 Spieldiener et al. Oct 1985 A
4545574 Sassak Oct 1985 A
4545583 Pearman et al. Oct 1985 A
4558474 Bastenhof Dec 1985 A
4564190 Frenzl Jan 1986 A
4576512 Combes et al. Mar 1986 A
4683686 Ozdemir Aug 1987 A
4695058 Carter, III et al. Sep 1987 A
4696251 Spieldiener et al. Sep 1987 A
4741388 Kuriowa May 1988 A
4759545 Grable Jul 1988 A
4778430 Goldfarb et al. Oct 1988 A
4783861 Leurent Nov 1988 A
4792260 Sauerbier Dec 1988 A
4797027 Combes et al. Jan 1989 A
4797605 Palanisamy Jan 1989 A
4805896 Moody Feb 1989 A
4805897 Dubeta Feb 1989 A
4817312 Fuller et al. Apr 1989 A
4836521 Barber Jun 1989 A
4850896 Smith et al. Jul 1989 A
4854256 Hayashi Aug 1989 A
4905987 Frenzi Mar 1990 A
4910814 Weiner Mar 1990 A
4939358 Herman et al. Jul 1990 A
4954014 Sauerbier et al. Sep 1990 A
4960275 Magon Oct 1990 A
4963057 Fournier Oct 1990 A
4979679 Downs Dec 1990 A
4984783 Fujimaki Jan 1991 A
4986784 French Jan 1991 A
5011134 Langford Apr 1991 A
5011161 Galphin Apr 1991 A
5020465 Langford Jun 1991 A
5022588 Haase Jun 1991 A
5033392 Schemitsch Jul 1991 A
5069387 Alba Dec 1991 A
5069443 Shiratori Dec 1991 A
5073082 Radlik Dec 1991 A
5092268 Taylor Mar 1992 A
5115908 Williams May 1992 A
5137497 Dubeta Aug 1992 A
5143107 Kelley Sep 1992 A
D330579 Briggs Oct 1992 S
5152210 Chen Oct 1992 A
5167321 Brodrick, Sr. Dec 1992 A
5171101 Sauerbier et al. Dec 1992 A
5183437 Millay et al. Feb 1993 A
5194048 Briggs Mar 1993 A
5213547 Lochtefeld May 1993 A
5219315 Fuller et al. Jun 1993 A
5224652 Kessler Jul 1993 A
5230662 Langford Jul 1993 A
5236280 Lochtefeld Aug 1993 A
RE34407 Frenzl Oct 1993 E
5253864 Heege et al. Oct 1993 A
5265373 Vollebregt Nov 1993 A
5265802 Hobbs et al. Nov 1993 A
5271692 Lochtefeld Dec 1993 A
5299964 Hopkins Apr 1994 A
5320362 Bear et al. Jun 1994 A
5323307 Wolf et al. Jun 1994 A
5378197 Briggs Jan 1995 A
5387158 Bertrand Feb 1995 A
5393170 Lochtefeld Feb 1995 A
5401117 Lochtefeld Mar 1995 A
5403238 Baxter et al. Apr 1995 A
5405294 Briggs Apr 1995 A
5421451 Easton Jun 1995 A
5421782 Lochtefeld Jun 1995 A
5426899 Jones Jun 1995 A
5427574 Donnelly-Weide Jun 1995 A
5433671 Davis Jul 1995 A
5437463 Fromm Aug 1995 A
5439170 Dach Aug 1995 A
5452678 Simpkins Sep 1995 A
5453054 Langford Sep 1995 A
5461876 Dressler Oct 1995 A
5473233 Stull et al. Dec 1995 A
5478281 Forton Dec 1995 A
5482510 Ishii et al. Jan 1996 A
5494729 Henry et al. Feb 1996 A
5499821 Rycroft Mar 1996 A
5503597 Lochtefeld et al. Apr 1996 A
5513470 Vollebregt May 1996 A
5536210 Barber Jul 1996 A
5540622 Gold et al. Jul 1996 A
5564859 Lochtefeld Oct 1996 A
5564984 Mirabella et al. Oct 1996 A
5581954 Vollebregt Dec 1996 A
5613443 Ariga et al. Mar 1997 A
5623986 Wiggs Apr 1997 A
5628584 Lochtefeld May 1997 A
5649867 Briggs Jul 1997 A
5662525 Briggs Sep 1997 A
5664910 Lochtefeld et al. Sep 1997 A
5667445 Lochtefeld Sep 1997 A
5678956 Freelain Oct 1997 A
5685778 Sheldon et al. Nov 1997 A
5704294 Van Winkle et al. Jan 1998 A
5716282 Ring et al. Feb 1998 A
5732635 McKoy Mar 1998 A
5735748 Meyers et al. Apr 1998 A
5738590 Lochtefeld Apr 1998 A
5741189 Briggs Apr 1998 A
5761776 Vollebregt Jun 1998 A
5766082 Lochtefeld et al. Jun 1998 A
5779553 Langford Jul 1998 A
5785592 Jacobsen Jul 1998 A
5791254 Mares et al. Aug 1998 A
5809701 Vollebregt Sep 1998 A
5816314 Wiggs et al. Oct 1998 A
5820471 Briggs Oct 1998 A
5820472 Briggs Oct 1998 A
D403392 Briggs et al. Dec 1998 S
5853332 Briggs Dec 1998 A
5860364 McKoy Jan 1999 A
5860766 Lochtefeld et al. Jan 1999 A
5865680 Briggs Feb 1999 A
D406871 Briggs Mar 1999 S
D407133 Briggs Mar 1999 S
5899633 Lochtefeld May 1999 A
5899634 Lochtefeld May 1999 A
5911190 Lochtefeld et al. Jun 1999 A
5927478 Archer Jul 1999 A
D413957 Briggs Sep 1999 S
5950253 Last Sep 1999 A
5967901 Briggs Oct 1999 A
D416066 Briggs Nov 1999 S
5978593 Sexton Nov 1999 A
5989126 Kilbert et al. Nov 1999 A
6006672 Newfarmer et al. Dec 1999 A
D421283 Briggs et al. Feb 2000 S
6036603 Mason et al. Mar 2000 A
6045449 Aragona et al. Apr 2000 A
6075442 Welch Jun 2000 A
6089987 Briggs Jul 2000 A
6105527 Lochtefeld et al. Aug 2000 A
6113506 Nielsen Sep 2000 A
6115974 Milanian Sep 2000 A
6132317 Lochtefeld Oct 2000 A
6132318 Briggs Oct 2000 A
6139382 Eschbacher et al. Oct 2000 A
6146282 McCready et al. Nov 2000 A
6161771 Henry Dec 2000 A
6162127 Ochi Dec 2000 A
6174242 Briggs et al. Jan 2001 B1
6178692 Graven Jan 2001 B1
6186902 Briggs Feb 2001 B1
6195851 Vollebregt et al. Mar 2001 B1
6210287 Briggs Apr 2001 B1
6231451 Briggs May 2001 B1
6237499 McKoy May 2001 B1
6261186 Henry Jul 2001 B1
6264202 Briggs Jul 2001 B1
6265977 Vega et al. Jul 2001 B1
6272695 Brandner Aug 2001 B1
6276353 Briggs et al. Aug 2001 B1
6280342 Tod Aug 2001 B1
6319137 Lochtefeld Nov 2001 B1
6320495 Sporgis Nov 2001 B1
6336771 Hill Jan 2002 B1
6354955 Stuart et al. Mar 2002 B1
6362778 Neher Mar 2002 B2
6371717 Grams et al. Apr 2002 B1
6375578 Briggs Apr 2002 B1
6443849 Byrd Sep 2002 B1
6460201 Lochtefeld Oct 2002 B1
6475095 Henry Nov 2002 B1
6488590 Katayama Dec 2002 B2
6491589 Lochtefeld Dec 2002 B1
6513284 Sandlin Feb 2003 B1
6520853 Suzuki Feb 2003 B2
6526158 Goldberg Feb 2003 B1
6533191 Berger et al. Mar 2003 B1
6527646 Briggs Apr 2003 B1
6553336 Johnson et al. Apr 2003 B1
6561914 Henry May 2003 B2
6569023 Briggs May 2003 B1
6579175 Suzuki Jun 2003 B2
6604327 Reville Aug 2003 B1
6608563 Weston et al. Aug 2003 B2
6634949 Briggs et al. Oct 2003 B1
6651268 Briggs Nov 2003 B1
6676530 Lochtefeld Jan 2004 B2
6702687 Henry Mar 2004 B1
6708706 Robinson Mar 2004 B1
6716107 Lochtefeld Apr 2004 B2
6738992 Lochtefeld May 2004 B2
6758231 Lochtefeld et al. Jul 2004 B1
6773355 Lekhtman Aug 2004 B1
6786830 Briggs et al. Sep 2004 B2
6789608 Wiggs Sep 2004 B1
6796908 Weston Sep 2004 B2
6830146 Scully et al. Dec 2004 B1
6928670 Lochtefeld et al. Aug 2005 B2
6957662 Lochtefeld et al. Oct 2005 B2
6976434 Roig et al. Dec 2005 B2
7004847 Henry Feb 2006 B2
7029400 Briggs Apr 2006 B2
7040994 Lochtefeld et al. May 2006 B2
RE39171 Lochtefeld Jul 2006 E
7179173 Henry et al. Feb 2007 B2
7229359 Henry et al. Jun 2007 B2
7263805 Chapus Sep 2007 B2
7285053 Henry et al. Oct 2007 B2
7371182 Henry et al. May 2008 B2
7371183 Henry et al. May 2008 B2
7401786 Lochtefeld Jul 2008 B2
6283871 Briggs Jan 2009 B1
20020072317 Livingston et al. Jun 2002 A1
20020082097 Henry et al. Jun 2002 A1
20020180155 Lochtefeld Dec 2002 A1
20030190967 Henry Oct 2003 A1
20030203760 Henry et al. Oct 2003 A1
20040033833 Briggs et al. Feb 2004 A1
20040077423 Weston et al. Apr 2004 A1
20050034768 Lochtefeld et al. Feb 2005 A1
20050047869 Lochtefeld Mar 2005 A1
20050085306 Henry et al. Apr 2005 A1
20050090318 Henry et al. Apr 2005 A1
20050090319 Henry et al. Apr 2005 A1
20050090320 Henry et al. Apr 2005 A1
20050090322 Henry et al. Apr 2005 A1
20050143173 Barney et al. Jun 2005 A1
20050148398 Lochtefeld et al. Jul 2005 A1
20050286976 Lochtefeld et al. Dec 2005 A1
20050288111 Cowan et al. Dec 2005 A1
20060052171 Henry et al. Mar 2006 A1
20060111195 Henry May 2006 A1
20060111196 Henry May 2006 A1
20060135274 Henry Jun 2006 A1
20060142090 Henry Jun 2006 A1
20060154726 Weston et al. Jul 2006 A1
20060178222 Henry et al. Aug 2006 A1
20060214805 Boujon Sep 2006 A1
20060229134 Briggs et al. Oct 2006 A1
20060258471 Briggs et al. Nov 2006 A1
20060260697 Lochtefeld et al. Nov 2006 A1
20060287030 Briggs et al. Dec 2006 A1
20070033866 Henry Feb 2007 A1
20070033867 Henry Feb 2007 A1
20070033868 Henry Feb 2007 A1
20070049385 Henry Mar 2007 A1
20070049386 Henry Mar 2007 A1
20070049387 Henry Mar 2007 A1
20070049388 Henry Mar 2007 A1
20070051036 Henry Mar 2007 A1
20070051037 Henry Mar 2007 A1
20070051038 Henry Mar 2007 A1
20070051039 Henry Mar 2007 A1
20070054745 Henry Mar 2007 A1
20070060402 Henry Mar 2007 A1
20070060403 Henry Mar 2007 A1
20070060404 Henry Mar 2007 A1
20070066396 Weston et al. Mar 2007 A1
20070066410 Henry Mar 2007 A1
20070078016 Henry Apr 2007 A1
20070087849 Henry Apr 2007 A1
20070087850 Henry Apr 2007 A1
20070087851 Henry Apr 2007 A1
20070087852 Henry Apr 2007 A1
20070087853 Henry Apr 2007 A1
20070087854 Henry Apr 2007 A1
20070197304 Henry et al. Aug 2007 A1
20070219004 Henry et al. Sep 2007 A1
20070249425 Weston et al. Oct 2007 A1
20080014835 Weston et al. Jan 2008 A1
20080021776 Lochtefeld Jan 2008 A1
20080216427 Lochtefeld Sep 2008 A1
Foreign Referenced Citations (23)
Number Date Country
543055 Dec 1955 BE
129145 Mar 1902 DE
893778 Oct 1953 DE
4243812 Jun 1994 DE
1318864 Jun 2003 EP
1604712 Dec 2005 EP
9203201 Mar 1992 WO
9204087 Mar 1992 WO
9733668 Sep 1997 WO
9845006 Oct 1998 WO
0110184 Feb 2001 WO
0222226 Mar 2002 WO
0222227 Mar 2002 WO
2005042124 May 2005 WO
2006057970 Jun 2006 WO
2006113936 Oct 2006 WO
2007019278 Feb 2007 WO
2007027841 Mar 2007 WO
2007028040 Mar 2007 WO
2007028042 Mar 2007 WO
2007028043 Mar 2007 WO
2007035524 Mar 2007 WO
2007106717 Sep 2007 WO
Related Publications (1)
Number Date Country
20070049387 A1 Mar 2007 US
Provisional Applications (2)
Number Date Country
60705298 Aug 2005 US
60717568 Sep 2005 US