1. Field of the Disclosure
The disclosure relates generally to systems and methods for selective control of fluid flow into a production string in a wellbore.
2. Description of the Related Art
Hydrocarbons such as oil and gas are recovered from a subterranean formation using a wellbore drilled into the formation. Such wells are typically completed by placing a casing along the wellbore length and perforating the casing adjacent each such production zone to extract the formation fluids (such as hydrocarbons) into the wellbore. These production zones are sometimes separated from each other by installing a packer between the production zones. Fluid from each production zone entering the wellbore is drawn into a tubing that runs to the surface. It is desirable to have substantially even drainage along the production zone. Uneven drainage may result in undesirable conditions such as an invasive gas cone or water cone. In the instance of an oil-producing well, for example, a gas cone may cause an inflow of gas into the wellbore that could significantly reduce oil production. In like fashion, a water cone may cause an inflow of water into the oil production flow that reduces the amount and quality of the produced oil. Accordingly, it is desired to provide even drainage across a production zone and/or the ability to selectively close off or reduce inflow within production zones experiencing an undesirable influx of water and/or gas.
The present disclosure addresses these and other needs of the prior art.
In aspects, the present disclosure provides an apparatus for controlling a flow of fluid between a wellbore tubular and a wellbore annulus. In one embodiment, the apparatus includes a flow control device that controls fluid flow in response to signals from a generator that generates electrical energy in response to a flow of an electrically conductive fluid. Because hydrocarbons fluids are not electrically conductive, no electrical energy is generated by the flow of hydrocarbons. In contrast, fluids such as brine or water are electrically conductive and do cause the generator to generate electrical energy. Thus, the flow control device may be actuated between an open position and a closed position in response to an electrical property of a flowing fluid.
In one embodiment, the flow control device may include an actuator receiving electrical energy from the generator, and a valve operably coupled to the actuator. The actuator may be a solenoid, a pyrotechnic element, a heat-meltable element, a magnetorheological element, and/or an electrorheological element. In certain embodiments, the actuator operates after a preset value for induced voltage is generated by the generator. In other embodiments, the flow control device may include circuitry configured to detect the electrical energy from the generator, and actuate a valve in response to the detection of a predetermined voltage value. In some arrangements, the actuator may include an energy storage element that stores electrical energy received from the generator and/or a power source configured to supply power to the actuator.
In aspects, the generator may use a pair of electrodes positioned along a flow path of the electrically conductive fluid to generate electrical energy. In one arrangement, one or more elements positioned proximate to the pair of electrodes generate a magnetic field along the flow path of the electrically conductive fluid that causes the electrodes to generate a voltage. In another arrangement, the pair of electrodes creates an electrochemical potential in response to contact with the electrically conductive fluid. In such embodiments, the pair of electrodes may include dissimilar metals.
In aspects, the present disclosure provides a method for controlling a flow of fluid between a wellbore tubular and a wellbore annulus. The method may include controlling the flow of fluid between the wellbore tubular and the wellbore annulus using a flow control device, and activating the flow control device using electrical energy generated by a flow of an electrically conductive fluid. In aspects, the method may also include generating the electrical energy using a generator and storing the electrical energy in a power storage element. In aspects, the method may include generating electrical energy using a generator; detecting electrical energy from the generator; and activating the flow control device upon detecting a predetermined voltage value.
In certain embodiments, the method may include generating electrical energy by positioning a pair of electrodes positioned along a flow path of the electrically conductive fluid; and positioning at least one element proximate to the pair of electrodes to generate a magnetic field along a flow path of the electrically conductive fluid. In other embodiments, electrical energy may be generated by positioning a pair of electrodes along a flow path of the electrically conductive fluid. The pair of electrodes may be electrically coupled to the flow control device and create an electrochemical potential in response to contact with the electrically conductive fluid.
In aspects, the present disclosure provides a method for control fluid flow in a well having a wellbore tubular. The method may include positioning a flow control device along the wellbore tubular; positioning a pair of electrodes along a flow of an electrically conductive fluid; generating an electrical signal using the pair of electrodes; and actuating the flow control device using the generated electrical signal.
It should be understood that examples of the more important features of the disclosure have been summarized rather broadly in order that detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
The advantages and further aspects of the disclosure will be readily appreciated by those of ordinary skill in the art as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference characters designate like or similar elements throughout the several figures of the drawing and wherein:
The present disclosure relates to devices and methods for controlling production of a hydrocarbon producing well. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure and is not intended to limit the disclosure to that illustrated and described herein. Further, while embodiments may be described as having one or more features or a combination of two or more features, such a feature or a combination of features should not be construed as essential unless expressly stated as essential.
Referring initially to
Each production device 34 features a production control device 38 that is used to govern one or more aspects of a flow of one or more fluids into the production assembly 20. As used herein, the term “fluid” or “fluids” includes liquids, gases, hydrocarbons, multi-phase fluids, mixtures of two of more fluids, water, brine, engineered fluids such as drilling mud, fluids injected from the surface such as water, and naturally occurring fluids such as oil and gas. Additionally, references to water should be construed to also include water-based fluids; e.g., brine or salt water. In accordance with embodiments of the present disclosure, the production control device 38 may have a number of alternative constructions that ensure selective operation and controlled fluid flow therethrough.
Referring now to
In one embodiment, the production control device 100 includes a particulate control device 110 for reducing the amount and size of particulates entrained in the fluids, an in-flow control device 120 that controls overall drainage rate from the formation, and an in-flow fluid control device 130 that controls in-flow area based upon a water content of the fluid in the production control device. The particulate control device 110 can include known devices such as sand screens and associated gravel packs.
Referring now to
The downhole generator 140 may be used in connection with an in-flow control device in a variety of configurations. In some embodiments, the downhole generator 140 may generate sufficient electrical energy to energize a flow control device. That is, the downhole generator 140 operates as a primary power source for an in-flow control device. In other embodiments, the downhole generator 140 may generate electrical power sufficient to activate a main power source that energizes a flow control device. In still other embodiments, the downhole generator 140 may be used to generate a signal indicative of water in-flow. The signal may be used by a separate device to close a flow control device. Illustrative embodiments are discussed below.
Referring now to
In other embodiments, the downhole generator may generate a signal using an electrochemical potential of an electrically conductive fluid. For example, in one embodiment, the downhole generator may include two electrodes (not shown) of dissimilar metals such that an electrochemical potential is created when the electrodes come in contact with an electrically conductive fluid such as brine produced by the formation. Examples of electrode pairs may be, but not limited to, magnesium and platinum, magnesium and gold, magnesium and silver and magnesium and titanium. Manganese, zinc chromium, cadmium, aluminum, among other metals, may be used to produce an electrochemical potential when exposed to electrically conductive fluid. It should be understood that the listed materials have been mentioned by way of example, and are not exhaustive of the materials that may be used to generate an electrochemical potential.
Referring now to
Referring now to
It should be understood that numerous arrangements may function as the flow control element 188. In some embodiments, the electrical power generated is used to energize a solenoid. In other arrangements, the electric power may be used in connection with a pyrotechnic device to detonate an explosive charge. For example, the high-pressure gas may be used to translate the piston 182. In other embodiments, the electrical power may be use to activate a “smart material” such as magnetostrictive material, an electrorheological fluid that is responsive to electrical current, a magnetorheological fluid that is responsive to a magnetic field, or piezoelectric materials that responsive to an electrical current. In one arrangement, the smart material may deployed such that a change in shape or viscosity can cause fluid to flow into the second chamber 186. Alternatively, the change in shape or viscosity can be used to activate the sleeve itself. For example, when using a piezoelectric material, the current can cause the material to expand, which shifts the piston and closes the ports.
Referring now to
It should be understood that
For the sake of clarity and brevity, descriptions of most threaded connections between tubular elements, elastomeric seals, such as o-rings, and other well-understood techniques are omitted in the above description. Further, terms such as “valve” are used in their broadest meaning and are not limited to any particular type or configuration. The foregoing description is directed to particular embodiments of the present disclosure for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope of the disclosure.