WATER DESALINIZATION SYSTEMS WITH HEAT COLLECTION ELEMENT TRACKING

Information

  • Patent Application
  • 20240034644
  • Publication Number
    20240034644
  • Date Filed
    July 28, 2022
    2 years ago
  • Date Published
    February 01, 2024
    9 months ago
Abstract
A water purifying and desalination system includes a solar concentrator that receives a sunlight and directs the sunlight toward heat collection elements. The collection element absorbs and converts a solar radiation into thermal energy. A tracking system selectively rotates the solar concentrator between a first position and a second position. Orientation devices maintain an upper chamber of a superheater tube of the heat collection elements orientated above a lower chamber of the superheater tube when the tracking system rotates the solar concentrator between the first position and the second position.
Description
TECHNICAL FIELD

This application relates to removing salt and other impurities from seawater, and specifically to a concentrated solar powered turn-key system that produces desalinated water. The application further relates to minimizing diseases caused by ingesting contaminated water that may include biological agents such as bacteria, polio, viruses, amoeba etc. via a process that generates renewable energy. The process heats sea/ocean water and converts a portion of it into wet steam that minimizes biological contaminants.


BACKGROUND

Despite water covering most of our planet's physical surfaces, many communities face extreme drinking water shortages. Predictions foresee many countries experiencing extreme water shortages during this century. With most of the earth's surface occupied by saltwater and other minerals, the challenge is not the availability of water, it is the accessibility of desalinated water. Some methods produce drinking water by forcing sea/ocean water through a semipermeable membrane exclusively through which saline cannot pass. These processes (reverse osmosis) often rely on excessive amounts of petroleum, coal, and other fossil fuels to produce drinking water.


The use of fossil fuels leaves a large carbon footprint, pollutes the environment, and contributes to heart disease, stroke, lung disease, and cancer. Carbon based pollution also contributes to premature deaths, global warming, erratic weather patterns, the melting of glaciers, and the rise in sea levels.


The description provided in the background section should not be assumed to be prior art merely because it is mentioned in or associated with the background section. The background section may include information that describes one or more aspects of the subject technology.


SUMMARY

According to certain aspects of the present disclosure, a purifying water system is provided. The purifying water system includes a solar concentrator that receives a sunlight and directs the sunlight toward a plurality of locations by bending a plurality of rays of the sunlight and focusing the plurality of rays of the sunlight onto the plurality of locations. The purifying water system includes a first support and a second support coupled to the solar concentrator. The purifying water system includes a tracking system coupled to the first support and the second support, the tracking system being rotatable to selectively rotate the solar concentrator between a first position and a second position. The purifying water system includes a first orientation device coupled to the first support. The purifying water system includes a second orientation device coupled to the second support. The purifying water system includes heat collection elements positioned at the plurality of locations. The heat collection elements comprise a heat collector tube surrounding a superheater tube. The heat collector tube couples the first orientation device and the second orientation device, wherein the first orientation device and the second orientation device maintains an upper chamber of the superheater tube orientated above a lower chamber of the superheater tube when the tracking system rotates the solar concentrator between the first position and the second position.


According to other aspects of the present disclosure, a method for tracking sunlight in a purifying water system is provided. The method includes the step of receiving a sunlight from a solar concentrator and directing the sunlight toward a plurality of locations by bending a plurality of rays of the sunlight and focusing the plurality of rays of the sunlight onto the plurality of locations, wherein the solar concentrator is coupled to a tracking system. The method includes the step of selectively rotating the solar concentrator, via the tracking system, between a first position and a second position to track the sunlight. The method includes the step of orientating heat collection elements positioned at the plurality of locations to maintain an upper chamber of a superheater tube of the heat collection elements orientated above a lower chamber of the superheater tube when the tracking system selectively rotates the solar concentrator between the first position and the second position.


According to other aspects of the present disclosure, a purifying water system is provided. The purifying water system includes a plurality of solar concentrators that receive a sunlight and direct the sunlight toward a plurality of locations by bending a plurality of rays of the sunlight and focusing the plurality of rays of the sunlight onto the plurality of locations, wherein each solar concentrator of the plurality of solar concentrators is coupled to a first support and a second support. The purifying water system includes a tracking system coupled to each of the first support and the second support of each solar concentrator. The tracking system is rotatable to selectively rotate the plurality of solar concentrators between a first position and a second position. Each first support is coupled to a first orientation device and each second support is coupled to a second orientation device. A plurality of heat collection elements is positioned at the plurality of locations, wherein each of the heat collection elements of the plurality of heat collection elements comprises a heat collector tube surrounding a superheater tube. The heat collector tube couples the first orientation device and the second orientation device, wherein the first orientation device and the second orientation device maintains an upper chamber of the superheater tube orientated above a lower chamber of the superheater tube when the tracking system rotates the plurality of solar concentrators between the first position and the second position.


It is understood that other configurations of the subject technology will become readily apparent to those skilled in the art from the following detailed description, wherein various configurations of the subject technology are shown and described by way of illustration. As will be realized, the subject technology is capable of other and different configurations and its several details are capable of modification in various other respects, all without departing from the scope of the subject technology. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.


The elements in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views. The accompanying drawings, which are included to provide further understanding and are incorporated in and constitute a part of this specification, illustrate disclosed embodiments and together with the description serve to explain the principles of the disclosed embodiments. In the drawings:



FIG. 1 is water desalination/purification system.



FIG. 2 is a water desalination/purification process.



FIG. 3 is a cross-sectional view of heat collection elements.



FIG. 4 is a cross-sectional view of an alternate heat collection elements.



FIG. 5 is a portion of a water desalination/purification system.



FIG. 6 is the water desalination/purification system of FIG. 5 including a steam generator.



FIG. 7 is a purification system.



FIG. 8 is a cross-sectional view of a single superheater tube and heat transfer collector tube.



FIG. 9 is a cross-sectional view of an alternative single superheater tube and heat transfer collector tube.



FIG. 10A is a perspective view illustrating a tracking system of the water desalination/purification system in a first position.



FIG. 10B is a perspective view illustrating the tracking system of FIG. 10A in an overhead position.



FIG. 10C is a perspective view illustrating a tracking system of FIG. 10A in a second position.



FIG. 11A is an end view illustrating a first orientation device of the heat transfer elements depicted in the first position of FIG. 10A, with certain portions sectioned and broken away to show details thereof.



FIG. 11B is an end view illustrating the first orientation device of the heat transfer elements of FIG. 11A depicted in the overhead position of FIG. 10B, with certain portions sectioned and broken away to show details thereof.



FIG. 11C is an end view illustrating the first orientation device of the heat transfer elements of FIG. 11A depicted in the second position of FIG. 10C, with certain portions sectioned and broken away to show details thereof.



FIG. 11D is an end view illustrating a second orientation device of the heat transfer elements, with certain portions sectioned and broken away to show details thereof.





In one or more implementations, not all of the depicted components in each figure may be required, and one or more implementations may include additional components not shown in a figure. Variations in the arrangement and type of the components may be made without departing from the scope of the subject disclosure. Additional components, different components, or fewer components may be utilized within the scope of the subject disclosure.


DETAILED DESCRIPTION

The detailed description set forth below is intended as a description of various implementations and is not intended to represent the only implementations in which the subject technology may be practiced. As those skilled in the art would realize, the described implementations may be modified in various different ways, all without departing from the scope of the present disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature and not restrictive.


A turn-key desalination/purification system and method (referred to as the system or the systems) exploit solar irradiation, a renewable, inexhaustible, and a non-polluting energy source to convert seawater and/or waste water (e.g., greywater) into drinking water. Through distillation and controlled pressure, some systems convert thermal energy into power, and in some applications, also store thermal energy which is used to convert seawater into drinking water and/or generate power when the sun is not shining, which allows the systems to operate continuously without consuming non-renewable energy or consuming a minimal amount of fossil fuels and other non-renewable energy. The systems' modularity provides flexibility that allows the systems to serve diverse geographic areas, meet consumption demands, and replenish energy and drinking water reserves with minimal impact on the environment.


In FIG. 1 or 2, the systems receive a heat transfer fluid such as water pumped from or received from the sea or ocean (referred to as seawater or oceanwater interchangeably). The sea/ocean water is preconditioned at 202 which removes large suspended debris, contaminants and particles by passing the sea/ocean water through a porous material to separate the fluid from the suspended particulate matter but not the salt or dissolved chemicals (i.e., the solute). This is referred to as clean and/or preconditioned sea/ocean water at 202. On average, the salinity of the seawater may comprise approximately three-point five percent or thirty-five parts of salt per thousand gallons of water.


The turn-key renewable systems reflect and concentrate sunlight onto heat collection elements 104 that collect solar energy and convert sunlight into thermal energy. One or more solar concentrators 106 made up of one or more reflecting materials or reflectors, reflect sunlight (e.g., the solar radiation) onto the heat collection elements 104. The solar concentrators 106 distribute the heat across a heat transfer fluid (preconditioned sea/ocean water) flowing through the heat collection elements 104. In FIG. 1, a solar field is made up of curved mirrors in the shape of two or more parabolic troughs or alternately, a plurality of linear Fresnel collectors that approximate a plurality of parabolic troughs. In other systems, other sources are used.


The solar concentrators 106 focus sunlight by bending rays of light onto the heat collection elements 104, which absorb and release heat into a heat transfer fluid (preconditioned sea/ocean water) flowing through the heat collection elements 104. In some applications, the heat transfer fluid is confined below atmospheric pressure (roughly 14.6959 pounds per square inch) by the heat collection elements 104, which lowers the heat transfer fluid's boiling point and freezing point.


Translucent and/or opaque seals (e.g., made of glass and/or metal) maintain desired pressure levels and compensate for thermal expansions and contractions. During a first phase of a renewable water cycle, the heat transfer fluid (preconditioned sea/ocean water) flowing through the heat collection elements 104 is heated with the solar radiation after being reflected from the solar concentrators 106 onto the heat collection elements 104. With a rise in temperature of the heat transfer fluid (preconditioned sea/ocean water), part of the preconditioned sea/ocean water starts converting into steam. Being lighter, the steam rises up into the upper chamber(s) 306/402 (shown in FIG. 4) through the perforations in the septa/partitions 310/404 dividing the superheater tube 302 of the heat transfer elements 104. The steam is channeled separately at 206 to a superheated state at a pressure that minimizes water induction on steam turbines and/or electric generators 108 that produce electricity and/or electric power. Thereafter, the superheated steam is condensed into purified drinking water via a second phase of the renewable water cycle via a condensing fluid. The preconditioned sea/ocean water that is not converted into steam 212 is returned to the heat exchanger 102.


The system's flexibility facilitates the desalination of water and generation of electricity when the sun is not shining by using other heat transfer fluids, such as molten salt or oils that act as coolants instead of the preconditioned sea/ocean water, and storing other heat transfer fluids so heated in the process of cooling the steam into hot salt/oil storage tanks (described below). In some systems, the thermal energy stored in the hot salt/oil tanks is used to heat the preconditioned sea/ocean water when the sun is not shining thereby allowing the generation of desalinated/purified drinking water and power when solar energy is not available.


In FIG. 1, the superheated steam and the condensing fluid originate from the same source. In an exemplary use case, the superheated steam and condensing fluid comprise saline water or preconditioned sea/ocean water converted into different physical states. The system executes the process flows and characteristics described herein and those shown in the FIGS. to generate mechanical power, electric power and/or desalinated water and/or purify contaminated water.


The preconditioned sea/ocean water is heated through a heat exchanger 102 that transfers heat from the residual water returned from outputs of heat collection elements 104 to the preconditioned sea/ocean water. In a first pass, filtered ocean water is not heated through the heat exchanger 102 since the temperature of the heat transfer fluid (e.g., water passing through the solar concentrators 106) is substantially equal to the temperature of the incoming preconditioned sea/ocean water. After passing through the heat collection elements 104/solar concentrators 106, the heat transfer fluid (preconditioned sea/ocean water) is heated and then, when the heated water returns from the heat collection elements 104, the heated water is used to heat the incoming preconditioned sea/ocean water 102. As later explained, the preconditioned sea/ocean water returning from the heat collection elements 104 (e.g., the heat transfer fluid) having a higher concentration of salt is mixed with unconditioned seawater in a water mixer 112. It is mixed in a proportion of three to one or other appropriate ratios before returning to the ocean so that the salt content of water returned to the ocean is not very highly concentrated and harmful to marine life.


At 204, the solar concentrators 106 (shown as parabolic troughs) convert radiant energy of the sun into thermal energy. The heat transfer occurs by reflecting the received solar radiation emitted by the sun onto the heat collection elements 104 that run the length of the solar concentrators 106. In FIGS. 1 and 2, the heat collection elements 104 are positioned in a channel located at the focal length of parabolic troughs/the solar concentrators 106. The solar concentrators 106 are oriented in a north-south direction relative to the sun and track the sun's movement via a tracking system aligned to the vernal and autumnal equinoxes (March 21 and September 21), to maintain the solar concentrator's 106 position perpendicular to the sun. The alignment ensures that continuous solar radiation remains focused on the heat collection elements 104 during a solar day. In some systems, the solar concentrators 106 focus solar radiation at about thirty to one-hundred times the sun's normal thermal intensity. Seasonal/tracking compensation is not applied in some systems including those system in which sun light is received on at least a portion of a reflective surface of the solar concentrators 106. In other systems, seasonal/tracking compensation is applied to ensure that sun light is received on at least a portion of the reflective surfaces of the solar concentrators 106.


The heat collected by the solar concentrators 106 induce a physical state change in the heat transfer fluid (preconditioned sea/ocean water) held in the heat collection elements 104, which converts a portion of the heat transfer fluid (preconditioned sea/ocean water), into steam. In some systems, the physical state change occurs under a constant pressure. At optional 206, the steam separated from the residual water is heated in a portion of the heat collection elements 104 or ancillary equipment to generate superheated dry steam. Superheated dry steam can lose some internal energy (e.g., cool) during its flow to the turbine 108 and/or generator without condensing into a saturated vapor and/or liquid and causing water induction.


In FIGS. 1 and 2, the superheated dry steam generates a kinetic reaction through a mechanical expansion against the turbine blades (e.g., a turbine) 108 and/or reciprocating pistons (e.g., a generator) which causes rotors and/or pistons to tum, which render power at 208. When pressure inductions are applied, the superheated steam remains as a compressible gas as it passes through the turbine 108 or engine/generator, preventing water damage that may occur with water induction. The optional superheating at 206 improves thermal efficiency. In turbines 108 and generators, water induction damage causes thrust bearing failures, damaged blades, thermal cracking, rub damage, permanent warping, ring damage, and control damage that the disclosed technology prevents, and in other applications, greatly minimizes.


At 210 the steam and/or superheated steam is cooled to a saturation temperature by the condenser 110 that renders a desalinated water. As the superheated steam cools, it gives up heat before it condenses and releases latent heat (the enthalpy of evaporation). The heat given up by the superheated steam as it cools to saturation levels is absorbed by the heat transfer fluid. In some systems, the condensing fluid or coolant used by the condenser 110 comprises an unheated sea/ocean water preconditioned at 202. In some systems other heat exchange medium, such as molten salt or oils, is used and the thermal energy absorbed is stored in a cascaded latent energy storage system described below. The coolant medium used does not come into direct contact with the steam being cooled to render desalinated water.


To minimize the presence of volatile organic compounds that have boiling points below that of purified water, some heat collection elements 104 vent or separately collect organic compounds by evacuating the gasses they become when the heat transfer fluid is heated below the boiling point of purified water. The venting or capture of these gases in a remote system or an expansion tank before purified water vapor is retained removes or reduces the impurities found in known distillation water processes. This process control allows the disclosed systems to remove pesticides, herbicides, carcinogens, and/or other volatile chemicals that have boiling points below purified water's boiling point. The resultant purified water has a significantly higher purity than known distilled purified water. Purified water is water in which the impurity load of dissolved solids or impurities does not exceed about ten parts-per-million.


Similarly, the temperature is regulated in the heat collection elements 104 to ensure that other contaminants and/or impurities with boiling points above the boiling point of purified water are not converted into a gaseous state. In some systems, temperature control is maintained by regulating the thermal energy (e.g., blocking sunlight, re-directing sunlight via repositioning of the solar concentrators 106, etc.) directed to the heat collection elements 104, venting heat and/or media from the heat collection elements 104 when a temperature threshold is met or exceeded, and/or adding predetermined volumes of cooler heat transfer fluid to the heat collection elements 104 until a predefined temperature is met or a temperature range is maintained.


At 212, heated residual water returned from the output of heat collection elements 104 is fed through the heat exchanger 102 that transfers heat from the residual fluid returned from the output of heat collection elements 104 to the heat transfer fluid (preconditioned sea/ocean water) that feeds the input of the heat collection elements 104. The heat exchange occurs without bringing the unprocessed and processed fluids into direct contact with each other. As shown in FIG. 1, the heated condensing fluid (preconditioned sea/ocean water) flowing from the condenser 110 is mixed with the heat transfer fluid (preconditioned sea/ocean water) that feeds the input of the heat collection elements 104.


To regulate the output of the heated residual water (e.g., the temperature, composition, salinity, contaminants, etc.) before releasing it back into the sea/ocean, it is diluted in a mixing chamber 112/214. When the heat transfer fluid is preconditioned sea/ocean water, the residual seawater is generally denser and heavier before dilution and would sink below the less saline seawater if returned to the ocean undiluted. Its release would affect ocean currents and marine life if left unprocessed. In FIGS. 1 and 2, the residual water is diluted via the mixing chamber 112, until the salinity of the output of the system on average is substantially three-point five percent (˜+/−4%). Thereafter, it may be diluted to attain other desired metrics such as a temperature range and a salinity level, for example. In some exemplary use cases, the mixing chamber 112 dilutes the residual water by approximately two and one-half to three times the volume of the residual water returned from the heat collection elements 104 to attain a desired temperature and salinity level. In FIG. 1, the diluent is provided by the source of the heat transfer fluid (preconditioned sea/ocean water) that feeds the heat collection elements 104.


The heat collection elements 104 comprise a superheater tube 302 and a heat collector tube 304 that is co-axial with and surrounds the superheater tube 302. In FIGS. 3 and 4, the heat collector tube 304 is made of an antireflective glass with a selective absorber surface which provides predetermined optical and radiative properties. The surface and thickness are selected to absorb radiation at wavelengths below three one-millionth of a meter, effectively capturing about nine-eight percent of the energy transmitted by solar radiation. In some systems, the heat collector tube 304 encloses and maintains a vacuum that reduces heat losses and protects against oxidation of the superheater tube 302. Some heat collection elements 104 described herein use glass and metal seals and metal bellows to control the thermal expansion between the tubing 302 and 304. The metal bellows are elastic vessels that are compressed or extended in some conditions when pressure is generated and applied.


In some systems, superheater tube 302 and the heat collector tube 304 that comprise the heat collection elements 104 have different radiative properties. In some systems, the surfaces of the tubes 302 and 304 have selective absorbent ranges. Some superheater tubes 302 have predefined radiative properties that enhance the conversion of the heat transfer fluid (preconditioned sea/ocean water) to vapor and superheated steam and the heat collector tube 304 reduces heat losses at high operating temperatures in comparison to the superheater tube 302. The surfaces may combine a high solar absorption rate and a low temperature loss rate, controlling the temperature range in which the surfaces receive and maintain predetermined thermal radiation levels. In some systems, some or all surface properties of the heat collection elements 104 are conditioned to absorb radiation at wavelengths below about three one-millionth of a meter (e.g., −3 μm), effectively capturing about nine-eight percent of the energy transmitted by solar radiation. In some systems, some or all surface properties of the heat collection elements 104 are conditioned to absorb wavelengths of visible light and infra-red light that provide heating properties that are outside of the disclosed spectrum.


With further reference to FIGS. 1 and 2, in certain aspects, the systems receive a heat transfer fluid from other sources such as water previously desalinated, collected through rain collectors (e.g., which may occur during the rainy season), etc. Further, the heat transfer fluid/medium may include any thermal retention fluid/medium. A thermal retention fluid/medium may be a continuous, amorphous substance whose molecules move freely past one another and tend to assume the shape of the vessel transporting it and that tends to absorb heat. Similarly, such fluid/medium or a different fluid/medium may be used as a refrigerant in the condenser 110 that that renders the desalinated water. As the thermal retention fluid/medium cools it gives up heat that may be stored in the refrigerant also referred to as the heat exchange medium that may be other media besides molten salt and oil, for example, that stores energy.


Some systems use the Fresnel lenses or parabolic troughs to receive the solar radiation/sunlight, which is then concentrated onto the heat transfer elements. The heat is absorbed by the heat transfer medium/fluid (such as air, fresh water, oil and/or etc.) flowing through the heat transfer elements. The heated heat transfer medium/fluid, then passes through the steam generator which also receives raw or preconditioned ocean water (ocean water from which suspended debris has been removed). Part of the preconditioned ocean water is converted into steam and remainder of the medium is returned to source such as the ocean after appropriate post processing, for example. If the water is returned to the ocean the post processing brings the salt content and temperature close to the temperature of ocean water or source within a tolerance. The steam is separated, superheated, and fed into the turbine/generator described herein to produce electricity. The steam coming out of the turbine/generator is then passed through the condenser to produce desalinated water. Preconditioned water or other heat transfer medium/fluid (such as air, fresh water and oil) may be used as the refrigerant.


It should be appreciated that the above described systems and methods may function in any weather conditions including when there is cloud cover or when the sun is not shining. Further, the systems and processes can generate renewable energy (e.g., electricity) by using fresh/previously desalinated water to only generate electricity.


In FIGS. 3 and 4, the superheater tube 302 that directly receives the pre-conditioned heat-transfer fluid (e.g., the preconditioned seawater) includes a first and second parabolic chamber separated by a shared perforated concave barrier 310, which provides a direct sieve connection between the U-shaped chambers 306 and 308. As shown, the curvature of the perforated concave barrier 310 (e.g., the curvature of the meniscus) can induce a latitudinal vertex in the upside-down parabolic chamber or Quonset-like chamber (e.g., the second chamber 306), which causes water droplets to converge and fall toward a portion of the concave parabolic chamber or crescent chamber (e.g., the first chamber 308).


In operation, the solar energy reflected by the solar concentrators 106 is absorbed by the heat collector tube 304 and transferred to the superheater tube 302. As the energy exceeds the boiling point of the heat transfer fluid, preconditioned sea/ocean water in this exemplary use case, wet steam and suspended water droplets are generated from the sea/ocean water. Since the water droplets have a greater mass and a greater inertia than the steam, the larger cross-sectional areas of non-perforated portions of the perforated concave barrier 310 in comparison to the apertures passing through it, causes the water droplets to collect on the non-perforated portions of the perforated concave barrier 310 and remain within the first chamber 308. The water droplets and steam that pass through the perforated opening in concave barrier 310 are subject to a flow turbulence induced by the curvature of the perforated concave barrier 310. The turbulence causes the greater mass and inertia of the water droplets that passed through the perforated openings in the concave barrier 310 to collect on portions of the common perforated concave barrier 310 that lies above a cooler portion of the heat transfer fluid. This helps in separating the liquid state of the heat transfer fluid (preconditioned sea/ocean water) from the vapor/steam state of the heat transfer fluid (preconditioned sea/ocean water). The differences in temperature is shown by the grey scaled or colored portions of the heat transfer fluid that is restricted to the first chamber shown in cross-section (e.g., red or portion 310 signifies the hottest temperature, the blue or portion 314 the coldest temperature, and the purple or portion 312 represents an intermediate temperature of the heat transfer fluid between the hottest and coldest temperatures of the heat transfer fluid).


As shown, the cross-sectional area of the second chamber 306 is greater than the cross-sectional area of the first chamber 308. The greater the cross-sectional flow area of the second chamber 306 and the smaller the size of the first chamber 308 also results in a greater reduction in speed of the suspended media in the second chamber 308. This reduces the kinetic energy of the suspended water droplets in the second chamber 308 causing more water droplets to fall out of suspension than alternate sized chambers creating a great volume of superheated steam.


In another alternate system, the superheater tube 302 may include optional flow restrictors (not shown) that reduces turbulent flow of the heat transfer fluid (e.g., the preconditioned sea/ocean water) and store heat in the first chamber 308 as heat is transferred to the superheater tube 302. The flow restrictors may be integrated with or a unitary part of the superheater tube 302 and maintain a more controllable steady state temperature range in portions of the first chamber 308 by increasing the heating and cooling surface areas in first chamber 308.



FIG. 4 shows another alternate system that executes the systems functions and process flows described herein and illustrated in the FIGS. FIG. 4 further includes a chamber 402 (shown in diametral cross-section) separating the first chamber 308 from the second chamber 306 by perforated concave barriers 310 and 404, respectively. As shown, the curvature of the perforated concave barrier 310 (e.g., the curvature of the meniscus) and concave barrier 404 induces a latitudinal vertex in the vapor flow in the chamber 402 (e.g., the third chamber 306) to the respective vertexes of concave barriers 310 and 404. In some systems, the vertices are substantially aligned along a virtual longitudinal axis to establish directional flow.


In operation, the solar energy reflected by the solar concentrators 106 is absorbed by the heat collector tube 304 and transferred to the superheater tube 302 through a thermal radiation. As the energy warms the heat transfer fluid (e.g., contaminated water) above the boiling point of volatile organic compounds but below the boiling point of purified water, contaminant vapor and suspended contaminated droplets are produced. With the temperature maintained, the organic compounds are removed from the heat transfer fluid and evacuated by venting the contaminants and vapor to an ancillary remote system or tank (not shown). The venting and capture of these gases in an ancillary system or tank before purified water vapor is produced, reduces the impurities that would otherwise remain in heat transfer fluid.


As the energy warms the heat transfer fluid above the boiling point of purified water (e.g., the purified water within the seawater in this exemplary use case), wet steam and suspended water droplets are generated. Since the water droplets have a greater mass and a greater inertia than the vapor, the larger cross-sectional areas of the perforated concave barriers 310, in comparison to the apertures passing there through, causes the water droplets to collect on the non-perforated portions of the perforated concave barrier 310 and pass through the opening to the first chamber 308. The water droplets and steam that pass through the perforated openings of the concave barrier 310 into the third chamber 402 are subject to a flow turbulence induced by the curvature of concave and convex surface barriers 310 and 404, respectively. The turbulence causes the greater mass and inertia of the water droplets that passed through the perforated concave barrier 310 into the third chamber 402 to fall back to the first chamber 308 through the openings. When the superheated steam within the chamber 402 is condensed (via later processes described herein), the distilled water is substantially free of pesticides, herbicides, carcinogens, and/or other volatile chemicals that have boiling points below purified water's boiling point. The resultant purified water has a significantly higher purity than known distilled water.



FIGS. 5 and 6 show an alternate water desalination system that executes the systems functions and process flows described herein and illustrated in the FIGS. In FIGS. 5 and 6 the cascaded latent energy storage system provides additional energy on demand and/or dispatches energy in response to a controller request. The reserve energy can provide thermal power needed to directly generate steam via a steam generator 602, can be used to increase the turn-key desalination system's output by providing more steam and/or power, and/or make the system continuously operational (e.g., twenty-four hours a day, seven days a week). The cascaded latent energy storage system comprises a plurality of tanks 604 and 606 in which a heat exchange media such as molten salt or oil in a cold storage tank 604 is used as a refrigerant in the condenser 110. As the condenser 110 cools the steam or superheated steam, the heat exchange media (e.g., molten salt or oil) absorbs the heat given off by the steam or superheated steam, which is then stored in a hot storage tank 606. When needed, the heat exchange media flows through the steam generator 602, where heat is transferred to the heat transfer fluid (e.g., preconditioned sea/ocean water) flowing through the steam generator 602 to generate superheated steam directly. The heat exchange media that flows through the steam generator 602 then flows back to the cold storage tank 604. It is then re-heated by the steam and/or superheated steam generated during the day when sun is shining and solar radiation is used to heat the heat transfer fluid (preconditioned sea/ocean water) passing through heat collection elements 104 when it passes through the condenser 110 before it returns (via a pump in some systems) to the hot storage tank 606. In this alternate system, the heat transfer fluid (molten salt or oil) is used to create superheated steam, purified water, electricity, and/or backup power collectively or in separate systems. When there is an insufficient amount of solar power to drive the system such as during the night or during cloudy days, the cascaded latent energy storage system serves as a primary source of power.


In some systems, the heat collection elements 104 are used to purify greywater. Greywater is domestic wastewater that has less organic loading than sewage (e.g., blackwater). After removing the suspended impurities, the greywater is passed through the heat collection elements 104 and by heating the greywater to a desired boiling point, the greywater is treated to a high standard before it is returned as purified water. The returned purified water reduces the need for other purified water sources and can significantly reduce demands on public water supplies. Further the diversion of the water through the purification system shown in FIG. 7 reduces the amount of wastewater entering sewers, which further reduces the energy demands to provide it and return it as wastewater, and the resources required to treat the wastewater. Further, the purification system can be used locally on site of the source of the greywater, reducing the resources required to produce and deliver purified water.


In operation, the solar energy reflected by the solar concentrators 106 is absorbed by the heat collector tube 304 and transferred to the superheater tube 302 through a thermal radiation. As the energy warms the greywater above the boiling point of water in the heat collection elements 104, the thermal energy in the boiling water and wet steam kills or inactivates biologically active organisms such as viruses, bacteria, protozoa, worm eggs—helminthiasis, fungi and other pathogens within the greywater. In some systems, organic compounds are also removed from the greywater and evacuated into an ancillary system and/or tank as described herein. The venting and capture of these gases before purified water vapor is produced, further reduces the impurities that would otherwise remain. Once purified, the treated water can be put to a portable or a non-portable use, filtered, etc.


With reference to FIGS. 8 and 9, in certain aspects, some disclosed systems comprise a single superheater tube 302 and a heat transfer collector tube 304. In the exemplary system, solar radiation and solar rays are bent using reflective mirrors, such as those shaped as parabolic troughs. The solar radiation and beams are focused onto the heat collector tube 304 that heats the processed or clean ocean water flowing through the superheater tube 302.


In such aspects, by gravity, a pump, or applying a pressure differential (by themselves or in a combination), processed or clean ocean water is drawn in and passed through the central superheater tube 302 of the heat transfer collector tube 304. It is a controlled flow so that only a bottom portion of the central superheater tube 302 is filled with or facilitates the flow of processed or clean ocean water. The superheater tube 302 is partially filled with the processed or clean ocean water, which allows vapor and steam to escape and occupy a portion of the superheater tube 302, such as an upper portion of the superheater tube 302 when the processed or clean water is heated by solar radiation.


The fluid flow through the superheater tube 302 is controlled so that only a portion of the superheater tube 302 is filled with processed or cleaned ocean water. In some use cases, it occupies less than between about one-half and one-third of total volume of the superheater tube 302. The rate of flow and the level of flow is controlled by a function of the amount of steam or vapor needed to be produced according to the amount of desalinated water and electricity desired. By controlling the rate and/or volume of the flow, only a portion of the superheater tube 302 is filled with liquid (e.g., the processed or clean ocean water), leaving space, such as space near the top portion of the superheater tube 302 to receive the vapor and/or steam through a virtual channel. In any of the disclosed systems, the diameter of the superheater tube 302 will depend on the flow rate of the fluid flow and the thickness of the superheater tube 302 is based on the pressure of the system.


Near an end of a single or multiple heat collector tubes 304, the steam flowing through the portion of the superheater tube 302, is separated from the water and passed through the turbine(s) or steam generator(s) 108 that render electricity. In this exemplary system and process, the steam exits the turbine(s) or generator(s) 108 and passes through a condenser 110 that cools the steam and converts it into desalinated water. Some condensers 110 use the clean or processed ocean water as a cooling agent; others use heat transfer fluids such as oil or molten salt, etc., as a cooling agent.


Each of the disclosed systems is regulated and managed by a concentrated solar power controller system (e.g., a controller) that provides real-time control and monitoring of the fluid flows and processing described herein. Some controller systems work with controller-actuators that provide a full-range of flow control that are used with thermostats and pressure sensors.


While each of the systems and methods shown and described herein operate automatically and operate independently, they also may be encompassed within other systems and methods and execute any number (N) of iterations of some or all of the processes used generate and/or store power and/or purified water, and/or desalinated water via a turn-key or integrated system. Alternate systems may include any combination of structures and functions described or shown in one or more of the FIGS. including systems that generate purified water exclusively and systems that generate power exclusively through multiple tubing. Further, the systems illustratively disclosed herein may be practiced in the absence of any element which is disclosed (e.g., the turbine 108, the condenser 110, and/or one or more of the heat exchangers 102, filters, etc.) and may be practiced in the absence (e.g., the exclusion) of any element that is not specifically disclosed herein including those elements disclosed in the prior art but not specifically disclosed herein. The functions, acts or tasks illustrated in the FIGS. and/or described herein may be executed in response to one or more sets of logic or instructions stored in or on non-transitory computer readable media executed by the controller. The functions, acts, or tasks are independent of the software instructions, instruction sets, storage media, processor or processing strategy, and may be performed by software, hardware, integrated circuits, firmware, micro code and the like, operating alone or in combination.


The term “coupled,” disclosed in this description is intended to encompass both direct and indirect coupling. Thus, a first and a second element are said to be coupled when they are directly connected with one another, as well as when the first element is connected through an intermediate component, which is connected directly or via one or more additional intermediate components to a second element. The term “substantially” or “about” encompasses a range that is largely, but not necessarily wholly, what is specified. It encompasses all but an insignificant amount, such as the values disclosed and/or a variance within a range of five to ten percent of the given value or range. The term “dry steam” and “superheated steam” is a steam that is at its temperature of saturation, but does not contain water particles in suspension. Dry steam and superheated steam have a very high dryness fraction, with substantially no moisture. In this disclosure, dry steam and superheated steam contain no more than about one half of one percent moisture. When devices or flows are responsive to commands events, and/or requests, the actions and/or steps of the devices or other flows, such as the operations that devices are performing, necessarily occur as a direct or an indirect result of the preceding commands, events, actions and/or flows. In other words, the operations and/or flows occur as a result of the preceding operations and/or flows. A device that is responsive to another requires more than an action (i.e., the device's response to) merely follow another action.


The disclosed tum-key desalination/purification system exploits renewable, inexhaustible, and a non-polluting energy source to convert seawater and waste water into purified drinking water. Through a unique process, the systems generate, and in some applications, store power, which allows the systems to operate continuously without importing energy. The systems serve diverse and rugged geographic areas, meet energy and drinking water standards and consumption demands, and replenish energy and drinking water reserves with minimal impact on the environment.


In certain aspects, as described above, the turn-key desalination/purification system includes a tracking system that aligns the solar concentrator 106 to track the sun's movement ensuring that continuous solar radiation remains focused on the heat collection elements 104 during a solar day. With particular reference to FIGS. 10A-10C, in certain aspects of the disclosed systems, the turn-key desalination/purification system includes a tracking system 1000. The tracking system 1000 includes a rotatable bar 1010 coupled to a first support 1012 and a second support 1014. The first support 1012 and the second support 1014 are couple to a frame 1015 supporting the solar concentrator 106. The rotatable bar 1010 of the tracking system 1000 is selectively rotatable between a first position and a second position with an overhead position identified therebetween. As the rotatable bar 1010 rotates between the first position and the second position, the solar concentrators 106 transition from the first position (shown in FIG. to the overhead position (shown in FIG. 10B) to the second position (shown in FIG. 10C) through the course of a solar day. Similarly, as the rotatable bar 1010 rotates from the second position back to the first position, the solar concentrator 106 transitions from the second position to the overhead position and back to the first position. As such, the solar concentrator 106 can track the sun's movement by transitioning from the first position to the second position to ensure that continuous solar radiation remains focused on the heat collection elements 104 during the solar day.


In such aspects, the heat transfer elements 104 are disposed between the first support 1012 and the second support 1014, as illustrated in FIGS. 10A-10C. For example, a first end 1016 of the heat collector tube 304 of the heat transfer elements 104 is supported by a first extension 1018 disposed on the first support 1012 via a first orientation device 1020. In certain aspects, the first orientation device 1020 is, but not limited to, a ball bearing. An outer surface of the first end 1016 of the heat collector tube 304 is coupled to an inner race 1022 of the first orientation device 1020. An outer race 1024 of the first orientation device 1020 is coupled to the first extension 1018. A first plurality of balls 1026 is disposed between the inner race 1022 and the outer race 1024 of the first orientation device 1020 enabling the inner race 1022 to be rotatable with respect to the outer race 1024.


In a similar manner, as illustrated in FIGS. 10A-10C and 11D, a second end 1028 of the heat collector tube 304 of the heat transfer elements 104 is supported by a second extension 1030 disposed on the second support 1014 via a second orientation device 1032. In certain aspects, the second orientation device 1032 is, but not limited to, a ball bearing. An outer surface of the second end 1028 of the heat collector tube 304 is coupled to an inner race 1034 of the second orientation device 1032 and an outer race 1036 of the second orientation device 1032 is coupled to the second extension 1030. A second plurality of balls 1038 is disposed between inner race 1034 and the outer race 1036 of the second orientation device 1032 enabling the inner race 1034 to be rotatable with respect to the outer race 1036.


In operation, the tracking system 1000 is selectively configured to track the movement of the sun through a solar day by rotating the rotating bar 1010 between the first position and the second position to ensure the solar concentrator 106 focuses continuous solar radiation on the heat collection elements 104. For example, at the beginning of the morning, the tracking system 1000 positions the solar concentrator 106 in the first position, as shown in FIG. With reference to FIGS. 10A and 11A, in the first position, the second chamber 306 (e.g., upper chamber) of the superheater tube 302 is positioned above the first chamber 308 (e.g., lower chamber) of the superheater tube 302.


As the solar day progresses, the tracking system 1000 transitions the solar concentrator 106 from the first position to the second position. For example, as the solar concentrator 106 transitions from the first position to the second position, the solar concentrator 106 will be in the overhead position for a period of time during the solar day, as shown in FIGS. and 11B. As the solar concentrator 106 transitions from the first position to the second position, the second chamber 306 of the superheater tube 302 remains positioned above the first chamber 308 of the superheater tube 302 throughout the transition due to the rotation of the inner races 1022, 1034 with respect to the outer races 1024, 1036, respectively. For example, the second chamber 306 of the superheater tube 302 remains positioned above the first chamber 308 of the superheater tube 302 in the overhead position, as shown in FIGS. 10B and 11B, and in the second position, as shown in FIGS. 10C and 11C.


It should be understood that while the first orientation device 1020 and the second orientation device 1032 have been described above in connection with the superheater tube 302 (including the first chamber 308 and the second chamber 306), for example, as illustrated in FIG. 3, the same principles can be applied to the superheater tube 302 (including the first chamber 308, the second chamber 306, and the third chamber 402), as exemplarily illustrated in FIG. 4. Moreover, in systems with a plurality of solar concentrators, the first orientation device 1020 and the second orientation device 1032 can be applied to each solar concentrator of such systems.


Other systems, methods, features and advantages will be, or will become, apparent to one with skill in the art upon examination of the figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the disclosure, and be protected by the following claims.

Claims
  • 1. A purifying water system comprising: a solar concentrator that receives sunlight and directs the sunlight toward a plurality of locations by bending a plurality of rays of the sunlight and focusing the plurality of rays of the sunlight onto the plurality of locations;a first support and a second support coupled to the solar concentrator;a tracking system coupled to the first support and the second support, the tracking system being rotatable to selectively rotate the solar concentrator between a first position and a second position;a first orientation device coupled to the first support, wherein the first orientation device comprises a first outer race coupled to a first extension disposed on the first support, wherein the first orientation device comprises a first inner race;a first plurality of balls disposed between the first inner race and the first outer race of the first orientation device, wherein the first inner race is configured to be rotatable with respect to the first outer race;a second orientation device coupled to the second support, wherein the second orientation device comprises a second outer race coupled to a second extension disposed on the second support, wherein the second orientation device comprises a second inner race;a second plurality of balls disposed between the second inner race and the second outer race of the second orientation device, wherein the second inner race is configured to be rotatable with respect to the second outer race; andheat collection elements positioned at the plurality of locations, the heat collection elements comprising a heat collector tube surrounding a superheater tube, the heat collector tube coupled to the first orientation device and the second orientation device, wherein the first orientation device and the second orientation device maintain an upper chamber of the superheater tube orientated above a lower chamber of the superheater tube when the tracking system rotates the solar concentrator between the first position and the second position, wherein the superheater tube is configured to evaporate water, wherein the first inner race is coupled to the heat collector tube, wherein the second inner race is coupled to the heat collector tube.
  • 2-3. (canceled)
  • 4. The system of claim 1, wherein the first orientation device and the second orientation device are ball bearings.
  • 5. The system of claim 1, wherein the solar concentrator comprises a parabolic trough.
  • 6. The system of claim 1, wherein the solar concentrator comprises a Fresnel collector.
  • 7. The system of claim 1, further comprising a perforated concave barrier separating the upper chamber from the lower chamber, wherein the perforated concave barrier allows fluid communication between the lower chamber and the upper chamber.
  • 8. The system of claim 7, wherein the upper chamber encloses a different volume than the lower chamber.
  • 9. The system of claim 1, wherein the superheater tube comprises radiative properties that enhance a conversion of heat transfer fluid to a vapor and comprises radiative properties that enhance conversion of the vapor to a superheated steam.
  • 10. The system of claim 9, wherein the superheater tube is configured to directly enclose the heat-transfer fluid.
  • 11. The system of claim 1, wherein the superheater tube further comprises a third chamber disposed between the upper chamber and the lower chamber.
  • 12. A method comprising: receiving a sunlight from a solar concentrator and directing the sunlight toward a plurality of locations by bending a plurality of rays of the sunlight and focusing the plurality of rays of the sunlight onto the plurality of locations, wherein the solar concentrator is coupled to a tracking system;selectively rotating the solar concentrator, via the tracking system, between a first position and a second position to track the sunlight;orientating heat collection elements positioned at the plurality of locations to maintain an upper chamber of a superheater tube of the heat collection elements orientated above a lower chamber of the superheater tube when the tracking system selectively rotates the solar concentrator between the first position and the second position.
  • 13. The method of claim 12, wherein a first support and a second support are coupled to the solar concentrator and the tracking system, a first orientation device is coupled to the first support, a second orientation device is coupled to the second support, and a heat collector tube of the heat collection elements is coupled to the first orientation device and the second orientation device.
  • 14. The method of claim 13, wherein the first orientation device comprises an outer race coupled to a first extension disposed on the first support, and the second orientation device comprises an outer race coupled to a second extension disposed on the second support.
  • 15. The method of claim 14, wherein the first orientation device comprises an inner race coupled to the heat collector tube, and the second orientation device comprises an inner race coupled to the heat collector tube.
  • 16. The method of claim 13, wherein the first orientation device and the second orientation device are ball bearings.
  • 17. A water purifying system comprising: a plurality of solar concentrators that receive sunlight and direct the sunlight toward a plurality of locations by bending a plurality of rays of the sunlight and focusing the plurality of rays of the sunlight onto the plurality of locations, wherein each solar concentrator of the plurality of solar concentrators is coupled to a first support and a second support; anda tracking system coupled to the first support and the second support of each solar concentrator, the tracking system being rotatable to selectively rotate the plurality of solar concentrators between a first position and a second position, wherein each first support is coupled to a first orientation device and each second support is coupled to a second orientation device, wherein the first orientation device comprises a first outer race coupled to a first extension disposed on the first support, wherein the first orientation device comprises a first inner race, wherein a first plurality of balls disposed between the first inner race and the first outer race of the first orientation device, wherein the first inner race is configured to be rotatable with respect to the first outer race, wherein the second orientation device comprises a second outer race coupled to a second extension disposed on the second support, wherein the second orientation device comprises a second inner race, wherein a second plurality of balls disposed between the second inner race and the second outer race of the second orientation device, wherein the second inner race is configured to be rotatable with respect to the second outer race, wherein a plurality of heat collection elements is positioned at the plurality of locations, wherein each of the heat collection elements of the plurality of heat collection elements comprises a heat collector tube surrounding a superheater tube, the heat collector tube coupled to the first orientation device and the second orientation device, wherein the first orientation device and the second orientation device maintain an upper chamber of the superheater tube orientated above a lower chamber of the superheater tube when the tracking system rotates the plurality of solar concentrators between the first position and the second position, wherein the superheater tube is configured to evaporate water, wherein the first inner race is coupled to the heat collector tube, wherein the second inner race is coupled to the heat collector tube.
  • 18. The system of claim 17, wherein the first orientation device and the second orientation device are ball bearings.
  • 19. The system of claim 17, further comprising a perforated concave barrier separating the upper chamber from the lower chamber, wherein the perforated concave barrier allows fluid communication between the lower chamber and the upper chamber.
  • 20. The system of claim 17, wherein the superheater tube further comprises a third chamber disposed between the upper chamber and the lower chamber.