The present invention relates to a water-discharging machine capable of being quickly dispatched to a fire site and strongly discharging a large amount of water when a fire occurs in a region and a facility, such as a nuclear reactor, where it is generally difficult to perform a fire extinguishing activity.
In particular, the present invention relates to a water-discharging machine including a large-diameter hose and a water discharge nozzle that are mounted on a vehicle such as a truck, drawing the hose out from the vehicle while the vehicle rushes into a fire site, and supplying water into the hose from behind the vehicle so as to be capable of discharging a large amount of water.
In a fire of a nuclear reactor and the like, it is necessary to quickly dispatch a water-discharging machine and discharge a large amount of water as in a normal fire, but more water is required in fire extinguishing compared with the normal fire, and accordingly, it is necessary to supply water with a thick hose.
In the normal fire, the hose has a thickness of about 65 mm at most, and a water discharge pressure is about 0.3 MPa, but it is necessary to supply high-pressure water of 1.2 MPa or higher with a particularly thick hose of about 150 mm in the nuclear reactor fire.
It is impossible for a firefighter to grasp such a thick hose and to discharge water, and it is necessary to mount a wound hose and a water discharge nozzle on the vehicle, to deliver the hose from a rear of the vehicle to make the vehicle rush into a fire site, and to feed water into the hose from behind the vehicle to discharge water from the water discharge nozzle.
As shown in JP-A-2001-87408, in a related-art fire engine, there is provided a basic water discharge system in which a water suction hose, a water discharge hose, and a pump are mounted on the fire engine, water is suctioned from the water suction hose and stored in a water tank provided in the fire engine, and the water in the water tank is discharged with the pump using a water discharge hose.
In this case, the water discharge hose is delivered, the firefighter grasps the water discharge nozzle which is at a tip end of the water discharge hose, and the pump mounted on the fire engine pressurizes water to discharge the water. However, in order to supply high-pressure water to a large-diameter hose as described above, the pump mounted on the fire engine cannot catch up with it, and the water tank mounted on the fire engine quickly becomes empty due to water discharge. Therefore, it is necessary that a large pump installed behind the vehicle feeds water, and that the vehicle mounts a nozzle and is dedicated to discharging water.
In a related-art fire-fighting system, such a system, in which the vehicle is equipped with only the hose and the nozzle, moves forward while delivering the hose backward, and supplies water to the hose by the large pump installed behind the vehicle described above and discharges the water from the water discharge nozzle mounted on the vehicle, is not present.
Further, in a nuclear reactor fire, a person often cannot enter the fire site, and it is necessary to bring the vehicle closer to the fire site by automatic operation or remote control and remotely control the water discharge nozzle to discharge water. Further, even if a problem occurs in the water-discharging machine, a person cannot enter and the problem cannot be solved.
Therefore, the water-discharging machine must be as simple in structure as possible and not cause a water hammer and the like when supplying water. If the water hammer is generated in the large-diameter hose as described above, the vehicle equipped with the hose may be turned over.
Patent Literature 1: JP-A-2001-87408
The present invention has been made in view of the above circumstances, and provides a fire-fighting system having a very simple structure with only a hose and a water discharge nozzle that are mounted on a vehicle, which is capable of bringing the vehicle close to a fire site by automatic operation or remote control, minimizing the occurrence of a water hammer during water supply, and strongly discharging a large amount of water.
In the present invention, a hose reel is mounted on a base that is mounted on a vehicle so as to be rotatable around a rotary shaft that extends vertically, a hose having a shape retaining property is spirally wound around the rotary shaft on the hose reel, a lower end of the hose is connectable to a water discharge pump installed behind the vehicle, and an upper end of the hose passes through the rotary shaft of the hose reel and is connected to a water discharge nozzle mounted at an upper position of the vehicle.
It is preferable to use the hose configured such that a lining made of rubber or soft synthetic resin is applied to an inner surface of a jacket including a plurality of warp yarns and rigid weft yarns spirally woven with respect to the warp yarns.
In the present invention, it is preferable that a spiral rib is protruded from an outer periphery of the hose reel, and the hose is wound between the rib.
Further, in the present invention, it is preferable that the hose reel is rotationally driven by rotary driving means mounted on the vehicle to deliver the hose backward from the hose reel when the vehicle moves forward.
Further, in this case, it is preferable that a hose delivery member configured to move up and down in conjunction with the rotation of the hose reel so as to correspond to a position of the hose delivered from the hose reel is provided on the base.
Further, in this case, it is preferable that a screw rod stands upright from the base and is caused to rotate in conjunction with the hose reel, and the hose delivery member is screwed to the screw rod and is configured to correspond to the position of the hose delivered from the hose reel by the rotation of the screw rod.
Further, in the present invention, it is preferable that a hose receiving member that draws a substantially cylindrical shape is provided around the hose reel around which the hose is wound, and the substantially cylindrical shape has an inner periphery slightly larger than an outer periphery of the hose wound around the hose reel.
It is preferable that the hose receiving member is configured such that a plurality of rotary rods stand upright from the base so as to draw the substantially cylindrical shape having the inner periphery slightly larger than the outer periphery of the hose wound around the hose reel.
Further, in the present invention, it is preferable that the water discharge nozzle is mounted on an upper base positioned above the hose reel, and an upper end of the rotary shaft is rotatably coupled to the water discharge nozzle. Further, it is also preferable that the water discharge nozzle is installed at the uppermost part of the vehicle, and an upper portion of the rotary shaft is coupled to a connecting pipe connected to the water discharge nozzle via a rotary joint.
Further, as a connection structure of the water discharge nozzle, a lower end of the rotary shaft can be coupled to a connecting pipe via a rotary joint, the connecting pipe can be connected to the discharge nozzle mounted in the vehicle, and an air vent valve can be provided on an upper end of the rotary shaft.
Further, in the present invention, it is preferable that the vehicle is caused to travel by automatic driving or remote control. In this case, it is preferable that the water discharge nozzle is rotatable vertically and horizontally by the remote control.
Hereinafter, the present invention will be described with reference to the drawings.
A water discharge nozzle 6 is mounted on a base (upper base) 4b positioned above the hose reel 5. An upper end of the hose 7 is connected to the water discharge nozzle 6. Further, a lower end of the hose 7 is drawn out backward of the vehicle 2.
Although the water-discharging machine 1 may be either the example shown in
Accordingly, when water is supplied to the hose 7 from behind, the water is sequentially filled from a lower side to an upper side of the hose 7, and finally discharged from the water discharge nozzle 6. Therefore, during this time, no air is present in the hose 7 and an effective cross-sectional area of the hose is not reduced, and the water hammer is less likely to occur, so that water can be safely discharged.
The hose 7 according to the present invention has a shape retaining property. For example, as shown in
The jacket 25 has a woven structure, and the warp yarn 23 is flexible but cannot be folded flat because the weft yarn 24 is rigid. Accordingly, the hose 7 is flexible enough to be wound around a cylindrical body 12 with a large diameter while the hose 7 itself maintains a cylindrical shape.
In the examples of
Next,
A hollow rotary shaft 11 stands upright at a center of the hose reel 5. The cylindrical body 12 is formed by surrounding the rotary shaft 11, and a spiral rib 13 protrudes from an outer periphery of the cylindrical body 12.
A branch pipe 14 is attached to an upper side portion of the rotary shaft 11, and the upper end of the hose 7 is connected to the branch pipe 14. The hose 7 extends out of the cylindrical body 12 from a through hole 15 formed in the cylindrical body 12, and is spirally wound between the rib 13.
Further, as shown in
In this way, as shown in
If there is not the hose receiving member, the hose 7 may stretch and loosen in a state of being wound around the hose reel 5, it would not be known in which direction the hose will loosen, and there is a possibility that the winding diameter of the hose 7 will become larger and the hose 7 will get over the rib 13 to collapse the winding, making it impossible to deliver the hose 7.
The water discharge nozzle 6 is mounted on the upper base 4b. The rotary shaft 11 is connected to the water discharge nozzle 6 via the rotary joint 27. Accordingly, the vehicle-mounted object 3 supplies water from the hose 7 to the water discharge nozzle 6 via the rotary shaft 11.
A hose delivery member 17 is provided at a rear portion of the vehicle-mounted object 3. A pair of screw rods 18 stand upright from the lower base 4a. The hose delivery member 17 is screwed to the screw rods 18. By rotating the screw rods 18 in conjunction with the hose reel 5 by the chain 19, the hose delivery member 17 corresponds to a position of the hose 7 delivered from the hose reel 5.
In the hose delivery member 17, frames 21 are fixed to a nut 20 screwed to the screw rod 18. A pair of rotation rollers 22 each having a narrowed central part are rotatably supported between the frames 21. A lower end portion of the hose 7 wound around the hose reel 5 is interposed between the rotation rollers 22. When the hose reel 5 is rotated, the hose 7 is delivered from the hose reel 5, and the delivery position is held by the hose delivery member 17.
The lower end of the hose 7 is delivered backward from the cylindrical body 12 of the hose reel 5. The lower end of the hose 7 extends backward through a space between the rotation rollers 22 in the hose delivery member 17, and is connected to a pump (not shown) provided behind the vehicle 2. Water is supplied from the pump into the hose 7 and discharged from the water discharge nozzle 6.
Then, the vehicle 2 moves forward in this state and the hose reel 5 is rotated by the motor 9, whereby the hose 7 is delivered as the vehicle 2 moves forward, and the delivery position is sequentially changed to a higher position.
Further, by transmitting the rotation of the hose reel 5 to the screw rod 18 by the chain 19, the screw rod 18 rotates, and the hose delivery member 17 rises accordingly. Accordingly, the delivery position of the hose 7 corresponds to the delivery position in the hose reel 5, and the hose 7 can be always delivered in a constant state.
Not limited to the means of the screw rods 18, the hose delivery member 17 can correspond to the delivery position of the hose 7 in conjunction with the rotation of the hose reel 5 by other means such as hydraulic pressure.
Although the vehicle 2 can move forward by operation of an operator, when the vehicle cannot move forward by the operation of the driver in the case of the nuclear reactor fire as described above, the vehicle 2 can move forward by automatic driving or remote control, and water can be discharged extremely safely. Further, in this case, it is preferable that the water discharge nozzle 6 is also rotatable vertically and horizontally by the remote control.
In the vehicle-mounted object 3 in the example of
Further, although in the above description, an upper end of the rotary shaft 11 is connected to the water discharge nozzle 6, the present invention is not limited to this structure. The connecting pipe 8 can be connected to a lower end of the rotary shaft 11 via the rotary joint 27 as shown in
In this case, once the water supplied from the hose 7 descends to the lower end of the rotary shaft 11, it is possible to prevent the occurrence of the water hammer due to air accumulation with a simple structure by providing an air vent valve 28 at the upper end of the rotary shaft 11.
The present invention is not limited to the above examples and is indicated by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
In the above description, the nuclear reactor fire is assumed, but the present invention can be widely used not only in a case of a fire such as the nuclear reactor where it is difficult to perform a fire extinguishing activity but also in a case where a large amount of water needs to be discharged at a high pressure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/020201 | 5/25/2018 | WO | 00 |