The present invention relates generally to the field of bottled water dispensers and, more particularly, to faucet actuators for water dispensers.
The demand for clean and healthy drinking water is increasing dramatically, which is being driven by the rapid growth in population and standards of living across the globe. This demand has translated into a continuing need for safe, clean, and easy to use water dispensers, including for both hot and cold water.
Many of the currently-available water dispensers suffer from at least several drawbacks. First, many of these water dispensers employ the use of lever faucets that are activated, i.e., cause water to be dispensed, by turning a faucet handle (lever) around an axis. This type of water dispensing actuator is not ergonomically preferred, insofar as the human hand and wrist must be contorted to turn the lever (which contortion is exacerbated by the fact that such dispensing actuators are often located in a relatively confined area of the water dispenser). In addition, many of the currently-available water dispensers, having conventional turn-style faucet actuators, include valve assemblies which are exposed to the air, thereby increasing the amount of air contact, potential human contact, and risk of contamination. Still further, many of the currently-available water dispensers do not include suitable child-proof mechanisms, which prevent a child from dispensing water, particularly hot water, without parent supervision.
As the following will demonstrate, many of the foregoing problems with currently-available water dispensers are addressed by the present invention.
According to certain aspects of the invention, bottled water dispensers are provided. The bottled water dispensers include a cabinet having an exterior portion, which includes side walls, a top wall, and a bottom wall. The water dispensers include at least one water dispensing actuator, which includes a cap portion having an exterior top surface that is flush with the top wall of the bottled water dispenser. The cap portion also includes a button that is substantially parallel with a side wall of the dispenser. The exterior top surface of the cap portion must be pressed downwards, and the button must be pushed inwards, in order to release water from the dispenser. The dispenser preferably comprises a stop, located within a recessed area of a side wall. The recessed area is adapted to receive a container into which water may be dispensed. The stop is preferably positioned near the top side of the recessed area, such that the stop will make contact with the container when it has been inserted into the recessed area a sufficient distance to receive dispensed water.
According to other aspects of the invention, actuating mechanisms are provided, which, upon being activated, cause water to be dispensed from the water dispensers described herein. More particularly, a first actuating mechanism is associated with the button of the cap portion mentioned above. A second actuating mechanism, a portion of which is also coupled with the cap portion, may not be activated unless the first actuating mechanism is activated—thereby providing a “child safety” feature for the water dispensers described herein. The second actuating mechanism is activated by pressing the exterior top surface of the cap portion downwards toward the interior portion of the water dispenser. The second actuating mechanism comprises an “h”-shaped push rod, which includes (i) a first portion that is operably coupled to the cap portion, (ii) a second portion that is received by a channel when the exterior top surface of the cap portion is pressed downwards, and (iii) a third portion that is operably coupled to a first end of a connecting rod.
A second end of the connecting rod is rotatably attached to a water tap release, such that upon pressing the exterior top surface of the cap portion downwards toward the interior of the water dispenser, a series of events occur to release water from the dispenser. Specifically, upon pressing the exterior top surface of the cap portion downwards, the first portion of the push rod is forced downward, causing the second portion to be inserted into the channel and the third portion to cause the connecting rod to also be forced downward. The downward movement of the connecting rod causes the water tap release to rotate upwards about an axis (with the axis being located in an area where the connecting rod is attached to the water tap release). The upwards rotation of the water tap release, in turn, causes water to be dispensed from a spout.
According to such aspects of the invention, the connecting rod is preferably comprised of a flexible material, and includes two protruding dowel portions located at the second end thereof. The invention provides that the dowel portions are, preferably, configured to be received by corresponding apertures located in the water tap release—and to serve as the axis about which the water tap release will rotate when the second actuating mechanism is activated. According to such embodiments, the connecting rod may be contorted, causing the dowels to be “pinched” into the apertures of the water tap release, such that the use of screws or other hardware to rotatably attach these components together can be avoided.
The above-mentioned and additional features of the present invention are further illustrated in the Detailed Description contained herein.
The following will describe in detail several preferred embodiments of the present invention. These embodiments are provided by way of explanation only, and thus, should not unduly restrict the scope of the invention. In fact, those of ordinary skill in the art will appreciate upon reading the present specification and viewing the present drawings that the invention teaches many variations and modifications, and that numerous variations of the invention may be employed, used and made without departing from the scope and spirit of the invention.
Referring to
According to further preferred embodiments of the invention, actuating mechanisms are provided, which, upon being activated, cause water to be dispensed from the water dispensers described herein. More particularly, a first actuating mechanism is associated with the button 8 of the cap portion 6 mentioned above. Referring to
The second actuating mechanism is activated by pressing the exterior top surface 12 of the cap portion 6 downwards toward the interior portion of the water dispenser. The second actuating mechanism comprises an “h”-shaped push rod 3, which includes (i) a first portion 17 (
A second end of the connecting rod is rotatably attached to a water tap release 10, such that upon pressing the exterior top surface 12 of the cap portion 6 downwards toward the interior of the water dispenser, a series of events occur to release water from the dispenser. Specifically, upon pressing the exterior top surface 12 of the cap portion 6 downwards, the first portion 17 of the push rod 3 is forced downward, causing the second portion 18 to be inserted into the channel 5 and the third portion 19 to cause the connecting rod 2 to also be forced downward. The downward movement of the connecting rod 2 causes the water tap release 10 to rotate upwards about an axis 13 (with the axis 13 being located in an area where the second end of the connecting rod 2 is attached to the water tap release 10). The upwards rotation of the water tap release 10, in turn, causes water to be dispensed from a spout 11 (which is fluidly connected to a water input valve assembly 1) as shown in
According to such aspects of the invention, the connecting rod 2 is preferably comprised of a flexible material, and includes two protruding dowel portions 13 (
The invention further provides that, in certain preferred embodiments, the spout 11 is located above the recessed area 16 (
The invention provides that the water dispensers may include reservoirs, and other assemblies, for holding and dispensing hot and cold water. For example, the water dispensers may include an internal cold tank which holds a volume of water, which preferably comprise a means for cooling or chilling the water contained therein, such as by incorporating the use of heat sinks (evaporators) or circulating coolants (refrigerant gasses) along the surfaces thereof. A non-limiting example of such a refrigerant gas includes 134a (tetrafluoroethane). Similarly, the water dispensers may include an internal hot tank, which preferably includes a means for heating the water contained therein, such as by including electric heating coils along or near the surface thereof. The cold and hot tanks may be connected to the water input valve 1 of the water dispensing actuator described herein, by way of one or more tubes (which carry water from the tanks to the water input valve 1). Still further, the invention provides that the bottled water dispensers of the present invention may comprise one or more water dispensing actuators, such as two actuators (
The invention provides that the water dispensers disclosed herein may be constructed of any suitable material, such as plastic, stainless steel, glass, or combinations of the foregoing. Furthermore, although the Figures in the present application show the featured water dispenser as having a four side wall configuration, it should be appreciated that the dispenser may be designed to include three side walls, five side walls, or other suitable configurations.
The many aspects and benefits of the invention are apparent from the detailed description, and thus, it is intended for the following claims to cover all such aspects and benefits of the invention which fall within the scope and spirit of the invention. In addition, because numerous modifications and variations will be obvious and readily occur to those skilled in the art, the claims should not be construed to limit the invention to the exact construction and operation illustrated and described herein. Accordingly, all suitable modifications and equivalents should be understood to fall within the scope of the invention as claimed herein.
Number | Name | Date | Kind |
---|---|---|---|
5762317 | Frahm et al. | Jun 1998 | A |
6824018 | Eaddy et al. | Nov 2004 | B1 |
6935536 | Tardif | Aug 2005 | B2 |
6962319 | Zheng | Nov 2005 | B2 |
D604554 | Lippert et al. | Nov 2009 | S |
20060175355 | Glucksman et al. | Aug 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100243683 A1 | Sep 2010 | US |