1. Field of the Invention
The invention relates generally to systems and methods for selective control of fluid flow into a wellbore.
2. Description of the Related Art
Hydrocarbons such as oil and gas are recovered from a subterranean formation using a wellbore drilled into the formation. Such wells are typically completed by placing a casing along the wellbore length and perforating the casing adjacent each such production zone to extract the formation fluids (such as hydrocarbons) into the wellbore. These production zones are sometimes separated from each other by installing a packer between the production zones. Fluid from each production zone entering the wellbore is drawn into a tubing that runs to the surface. It is desirable to have substantially even drainage along the production zone. Uneven drainage may result in undesirable conditions such as an invasive gas cone or water cone. In the instance of an oil-producing well, for example, a gas cone may cause an inflow of gas into the wellbore that could significantly reduce oil production. In like fashion, a water cone may cause an inflow of water into the oil production flow that reduce the amount and quality of the produced oil. Accordingly, it is desired to provide even drainage across a production zone and/or the ability to selectively close off or reduce inflow within production zones experiencing an undesirable influx of water and/or gas.
The present disclosure addresses these and other needs of the prior art.
In aspects, the present disclosure provides a method for producing fluid from a subterranean formation. In one embodiment, the method includes: configuring an element to disintegrate when exposed to a selected fluid; positioning the element in a wellbore; and actuating a flow control device using the element. In one arrangement, the element disintegrates when exposed to water. Actuating the flow control device may restrict a flow of fluid into a wellbore tubular. The method may also include applying an opening force to the flow control device to maintain the flow control device in an open position to permit flow into the wellbore tubular and/or applying a closing force to urge the flow control device to a closed position to restrict flow into the wellbore tubular. In embodiments, the method includes configuring the element to deactivate the opening force and/or release the closing force. In arrangements, the method may also include calibrating the element to disintegrate in water. In embodiments, the method may include resetting the flow control device from a closed position to an open position.
In aspects, the present disclosure provides an apparatus for controlling flow of a fluid into a wellbore tubular. The apparatus may include a flow control device controlling the flow of the fluid; and a disintegrating element associated with the flow control device. The flow control device may be actuated when the disintegrating element disintegrates when exposed to the flowing fluid. In one embodiment, the disintegrating element disintegrates upon exposure to water in the fluid. For example, the disintegrating element may be calibrated to disintegrate when exposed to water. In embodiments, an opening force associated with the flow control device may maintain the flow control device in an open position to permit flow into the wellbore tubular prior to actuation. Also, a closing force associated with the flow control device may urge the flow control device to a closed position to restrict flow into the wellbore tubular after actuation.
In aspects, the present disclosure provides a system for controlling a flow of a fluid in a well intersecting a formation of interest. In embodiments, the system includes a tubular configured to be disposed in the well; a flow control device positioned at a selected location along the tubular, the flow control device being configured to control flow between a bore of the tubular and the exterior of the tubular; and an actuator coupled to the flow control device. The actuator may include a disintegrating element calibrated to disintegrate in a predetermined manner when the disintegrating element when exposed to a selected fluid. In embodiments, the system may include a plurality of flow control device positioned at selected locations along the tubular and an actuator coupled to each flow control device. Each actuator may include a disintegrating element calibrated to disintegrate in a predetermined manner when the disintegrating element when exposed to a selected fluid. The flow control devices may be configured to cooperate to control a percentage of water in the fluid flowing in the tubular.
It should be understood that examples of the more important features of the disclosure have been summarized rather broadly in order that detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
The advantages and further aspects of the disclosure will be readily appreciated by those of ordinary skill in the art as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference characters designate like or similar elements throughout the several figures of the drawing and wherein:
The present disclosure relates to devices and methods for controlling production of a hydrocarbon producing well. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. Further, while embodiments may be described as having one or more features or a combination of two or more features, such a feature or a combination of features should not be construed as essential unless expressly stated as essential.
Referring initially to
Each production device 34 features a production control device 38 that is used to govern one or more aspects of a flow of one or more fluids into the production assembly 20. As used herein, the term “fluid” or “fluids” includes liquids, gases, hydrocarbons, multi-phase fluids, mixtures of two of more fluids, water, brine, engineered fluids such as drilling mud, fluids injected from the surface such as water, and naturally occurring fluids such as oil and gas. In accordance with embodiments of the present disclosure, the production control device 38 may have a number of alternative constructions that ensure selective operation and controlled fluid flow therethrough.
Referring now to
In one embodiment, the production control device 100 includes a particulate control device 110 for reducing the amount and size of particulates entrained in the fluids, an in-flow control device 120 that controls overall drainage rate from the formation, and a flow control device 130 that controls in-flow area based upon the composition of a fluid in the vicinity of the flow control device 130. The particulate control device 110 can include known devices such as sand screens and associate gravel packs and the in-flow control device 120 can utilize devices employing tortuous fluid paths designed to control inflow rate by created pressure drops.
An exemplary flow control device 130 may be configured to control fluid flow into a flow bore 102 based upon one or more characteristics (e.g., water content) of the in-flowing fluid. In embodiments, the flow control device 130 is actuated by an element 132 that disintegrates upon exposure to one or more specified fluids in the vicinity of the flow control device 130. Exemplary types of disintegration include, but are not limited to, oxidizing, dissolving, melting, fracturing, and other such mechanisms that cause a structure to lose integrity and fail or collapse. The disintegrating element 132 may be formed of a material, such as a water soluble metal that dissolves in water, or metals such as aluminum, that oxidize or corrode, when exposed to water. The water may be a constituent component of a produced fluid; e.g., brine or salt water. In embodiments, the disintegration is calibrated. By calibrate or calibrated, it is meant that one or more characteristics relating to the capacity of the element to disintegrate is intentionally tuned or adjusted to occur in a predetermined manner or in response to a predetermined condition or set of conditions (e.g., rate, amount, etc.).
As will be appreciated, a disintegrating element may be used in numerous arrangements to shift the flow control device 130 from a substantially open position where fluid flows into the flow bore 102 to a substantially closed position where fluid flow into the flow bore 102 is restricted. In some configurations, the flow control device 130 utilizes an opening force to maintain the open position and a closing force to shift to the closed position. The disintegrating element may be used to directly or indirectly restrain the closing force or directly or indirectly keep the closing force deactivated until a specified condition has occurred. In embodiments, the condition may be a threshold value of water concentration, or water cut, in the fluid flowing across the flow control device 130. Once the disintegration sufficiently degrades the structural integrity of the disintegrating element, the closing force is applied to close or restrict flow across the flow control element 130. Illustrative applications for disintegrating elements are described below.
Referring now to
During fluid flow with little or no water cut, the disintegrating element 202 restrains the biasing element 208 such that the flow restriction element 204 is not engaged with or seated on the orifice 206. When a sufficient amount of water surrounds the disintegrating element 202, the disintegrating element 202 dissolves or otherwise loses the capacity to restrain the biasing force applied by the biasing element 208. When released, the biasing element 208 applies a force on the lever 210 that overcomes the weight of the counter weight 214. In response, the flow restriction element 204 rotates into a sealing engagement with the orifice 206.
Referring now to
The electrical circuit 244 includes a switch 254 that selectively energizes an electromagnetic circuit 256. In some embodiments, the switch 254 may be a switch that is activated using an applied magnetic field, such as a Reed switch. For example, the switch 254 may be moved between an energized and non-energized position by a magnetic trigger 258. The magnetic trigger 258 includes a magnetic element 260 that may slide or shift between two positions. In a first position, the magnetic field generated by the magnetic element 260 is distant from and does not affect the switch 254. In a second position, the magnetic field generated by the magnetic element 260 is proximate to and does affect the switch 254. The switch 254 may be configured to energize the electromagnetic circuit 246 when the magnetic trigger is in the first position and de-energize the electromagnetic circuit 246 when the magnetic trigger is in the second position. It should be understood that, in addition to magnetic fields, the switch 254 may also be activated by mechanical co-action, an electrical signal, a hydraulic or pneumatic arrangement, a chemical or additive, or other suitable activation systems.
Movement of the magnetic trigger 258 between the first position and the second position is controlled by the disintegrating element 242 and a biasing element 262. Initially, the disintegrating element 242 has sufficient structural integrity to maintain the biasing element 262 in a compressed state and the magnetic trigger 258 in the first position. When a sufficient amount of water surrounds the disintegrating element 242, the disintegrating element 242 loses its capacity to resist the biasing force applied by the biasing element 262. As the biasing element 262 overcomes the resistive force of the disintegrating element 242, the biasing element 262 slides the magnetic trigger 258 into the second position. When magnetic element 260 of the magnetic trigger 258 is sufficiently close to the switch 254, the switch 254 opens or breaks the electromagnetic electrical circuit 244 and thereby de-activates the magnetic field generated by the electromagnetic circuit 256. Thereafter, gravity or some other closing force urges the flow restriction element 246 to rotate into engagement with the orifice 248.
Referring now to
Movement of the flow restriction element 286 between the first position and the second position is controlled by the disintegrating element 282. Initially, the disintegrating element 282 has sufficient structural integrity to fix the magnetic element 284 within the flow restriction element 286. When a sufficient amount of water surrounds the disintegrating element 242, the disintegrating element 242 dissolves or otherwise loses its capacity to fix the magnetic element 284 to the flow restriction element 286. When the magnetic element 284 is physically separated from the flow restriction element 286, gravity or some other force urges the flow restriction element 286 to rotate into engagement with the orifice 288.
Referring now to
Movement of the flow restriction element 326 between the first position and the second position is controlled by the counter weight 322. Initially, the counter weight 322 has sufficient mass to exert the necessary downward force to counteract the weight of the flow restriction element 326. When a sufficient amount of water surrounds the counter weight 322, the disintegrating material of the counter weight 322 dissolves or otherwise loses its mass. When sufficient mass is lost, gravity or some other force urges the flow restriction element 326 to rotate into engagement with the orifice 328. In one variant to this embodiment, a pin 332 may be used to connect the counter weight 322 to the lever 324. In this variant, the pin 332 is formed of a disintegrating material and the counter weight 322 may be formed of a non-disintegrating material such as steel or ceramic. In another variant, both the pin 332 and the counter weight 322 are formed of a disintegrating material.
Referring now to
The electrical circuit 364 includes a switch 374 that selectively energizes an electromagnetic circuit 376. The switch 374 may be configured to de-energize the electromagnetic circuit 376 when in a first position, or “open” circuit, and energize the electromagnetic circuit 376 when in the second position, or “closed” circuit. In some embodiments, the switch 374 may be include a biasing element 378 that is configured to actuate the switch 374 to close the electrical circuit 364 to energize the electromagnetic circuit 376. The disintegrating element 362 retains the biasing element 378 to prevent the biasing element 378 from engaging the switch 374. It should be understood that, in addition to mechanical interaction, the switch 374 may also be activated by a magnetic signal, an electrical signal, a hydraulic or pneumatic arrangement, a chemical or additive, or other suitable activation systems.
Actuation of the switch 374 is controlled by the disintegrating element 362 and the biasing element 378. Initially, the disintegrating element 362 has sufficient structural integrity to maintain the biasing element 378 in a compressed state and the electrical circuit 364 in the open condition. Thus, the flow restriction element 366 is maintained in an open position by the counter weight 382. When a sufficient amount of water surrounds the disintegrating element 362, the disintegrating element 362 loses its capacity to resist the biasing force applied by the biasing element 378. As the biasing element 378 overcomes the resistive force of the disintegrating element 362, the biasing element 378 slides into engagement with the switch 374. When actuated by this engagement, the switch 374 closes the electric circuit 364 and thereby activates the electromagnetic circuit 376. Thereafter, the magnetic field pulls the flow restriction element 366 downward to rotate into engagement with the orifice 368.
Referring now to
During fluid flow with little or no water cut, the disintegrating element 402 restrains the biasing element 408 such that the flow restriction element 404 is not engaged with or seated on the orifice 406. When a sufficient amount of water surrounds the disintegrating element 402, the disintegrating element 402 dissolves or otherwise loses the capacity to restrain the biasing force applied by the biasing element 408. Thus, the biasing element 408 is released to apply a closing force that causes the flow restriction element 404 to translate into a sealing engagement with the orifice 406.
In certain embodiments, the flow control device may be configured to be reversible; i.e., return to an open position after being actuated to a closed position. For example, as discussed above, the
In the above-described embodiments, the flow control devices may be positioned in the wellbore such that gravity can operate as a closing force that pulls the flow restriction element downward into engagement with the orifice. In such embodiments, the flow control device may be rotatably mounted on a wellbore tubular and include a counter weight that rotates to a wellbore low side to thereby orient the flow control device at the wellbore highside.
In some embodiments, the disintegrating elements may be configured to react with an engineered fluid, such as drilling mud, or fluids introduced from the surface such as brine. Thus, in addition to a change in composition of the fluid flowing from the formation, the flow control devices can be activated as needed from the surface. Additionally, it should be understood that
For the sake of clarity and brevity, descriptions of most threaded connections between tubular elements, elastomeric seals, such as o-rings, and other well-understood techniques are omitted in the above description. The foregoing description is directed to particular embodiments of the present disclosure for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1362552 | Alexander et al. | Dec 1920 | A |
1649524 | Hammond | Nov 1927 | A |
1915867 | Penick | Jun 1933 | A |
1984741 | Harrington | Dec 1934 | A |
2089477 | Halbert | Aug 1937 | A |
2119563 | Wells | Jun 1938 | A |
2214064 | Niles | Sep 1940 | A |
2257523 | Combs | Sep 1941 | A |
2412841 | Spangler | Dec 1946 | A |
2762437 | Egan et al. | Sep 1956 | A |
2810352 | Tumilson | Oct 1957 | A |
2814947 | Stegemeier et al. | Dec 1957 | A |
2942668 | Maly et al. | Jun 1960 | A |
2945541 | Maly et al. | Jul 1960 | A |
3326291 | Zandmer | Jun 1967 | A |
3385367 | Kollsman | May 1968 | A |
3419089 | Venghiattis | Dec 1968 | A |
3451477 | Kelley | Jun 1969 | A |
3675714 | Thompson | Jul 1972 | A |
3692064 | Hohnerlein et al. | Sep 1972 | A |
3739845 | Berry et al. | Jun 1973 | A |
3741301 | Maly et al. | Jun 1973 | A |
3791444 | Hickey | Feb 1974 | A |
3876471 | Jones | Apr 1975 | A |
3918523 | Stuber | Nov 1975 | A |
3951338 | Genna | Apr 1976 | A |
3975651 | Griffiths | Aug 1976 | A |
4153757 | Clark | May 1979 | A |
4173255 | Kramer | Nov 1979 | A |
4180132 | Young | Dec 1979 | A |
4186100 | Mott | Jan 1980 | A |
4187909 | Erbstoesser | Feb 1980 | A |
4248302 | Churchman | Feb 1981 | A |
4250907 | Struckman et al. | Feb 1981 | A |
4257650 | Allen | Mar 1981 | A |
4287952 | Erbstoesser | Sep 1981 | A |
4294313 | Schwegman | Oct 1981 | A |
4415205 | Rehm et al. | Nov 1983 | A |
4434849 | Allen | Mar 1984 | A |
4491186 | Alder | Jan 1985 | A |
4497714 | Harris | Feb 1985 | A |
4552218 | Ross et al. | Nov 1985 | A |
4572295 | Walley | Feb 1986 | A |
4614303 | Moseley, Jr. et al. | Sep 1986 | A |
4649996 | Kojicic et al. | Mar 1987 | A |
4782896 | Witten | Nov 1988 | A |
4821800 | Scott et al. | Apr 1989 | A |
4856590 | Caillier | Aug 1989 | A |
4917183 | Gaidry et al. | Apr 1990 | A |
4944349 | Von Gonten, Jr. | Jul 1990 | A |
4974674 | Wells | Dec 1990 | A |
4998585 | Newcomer et al. | Mar 1991 | A |
5004049 | Arterbury | Apr 1991 | A |
5016710 | Renard et al. | May 1991 | A |
5033551 | Grantom | Jul 1991 | A |
5132903 | Sinclair | Jul 1992 | A |
5156811 | White | Oct 1992 | A |
5333684 | Walter et al. | Aug 1994 | A |
5337821 | Peterson | Aug 1994 | A |
5339895 | Arterbury et al. | Aug 1994 | A |
5377750 | Arterbury et al. | Jan 1995 | A |
5381864 | Nguyen et al. | Jan 1995 | A |
5431346 | Sinaisky | Jul 1995 | A |
5435393 | Brekke et al. | Jul 1995 | A |
5435395 | Connell | Jul 1995 | A |
5439966 | Graham et al. | Aug 1995 | A |
5551513 | Surles et al. | Sep 1996 | A |
5586213 | Bridges et al. | Dec 1996 | A |
5597042 | Tubel et al. | Jan 1997 | A |
5607017 | Owens et al. | Mar 1997 | A |
5609204 | Rebardi et al. | Mar 1997 | A |
5673751 | Head et al. | Oct 1997 | A |
5803179 | Echols | Sep 1998 | A |
5829522 | Ross | Nov 1998 | A |
5831156 | Mullins | Nov 1998 | A |
5839508 | Tubel et al. | Nov 1998 | A |
5865254 | Huber et al. | Feb 1999 | A |
5873410 | Iato et al. | Feb 1999 | A |
5881809 | Gillespie et al. | Mar 1999 | A |
5896928 | Coon | Apr 1999 | A |
5982801 | Deak | Nov 1999 | A |
6065535 | Ross | May 2000 | A |
6068015 | Pringle | May 2000 | A |
6098020 | Den Boer | Aug 2000 | A |
6109350 | Nguyen et al. | Aug 2000 | A |
6112815 | Boe et al. | Sep 2000 | A |
6112817 | Voll et al. | Sep 2000 | A |
6119780 | Christmas | Sep 2000 | A |
6220350 | Brothers et al. | Apr 2001 | B1 |
6228812 | Dawson et al. | May 2001 | B1 |
6253847 | Stephenson | Jul 2001 | B1 |
6253861 | Carmichael et al. | Jul 2001 | B1 |
6273194 | Hiron | Aug 2001 | B1 |
6305470 | Woie | Oct 2001 | B1 |
6325153 | Harrell | Dec 2001 | B1 |
6338363 | Chen et al. | Jan 2002 | B1 |
6367547 | Towers et al. | Apr 2002 | B1 |
6371210 | Bode et al. | Apr 2002 | B1 |
6372678 | Youngman et al. | Apr 2002 | B1 |
6419021 | George et al. | Jul 2002 | B1 |
6474413 | Barbosa et al. | Nov 2002 | B1 |
6505682 | Brockman | Jan 2003 | B2 |
6516888 | Gunnerson et al. | Feb 2003 | B1 |
6581681 | Zimmerman et al. | Jun 2003 | B1 |
6581682 | Parent et al. | Jun 2003 | B1 |
6622794 | Zisk | Sep 2003 | B2 |
6632527 | McDaniel et al. | Oct 2003 | B1 |
6635732 | Mentak | Oct 2003 | B2 |
6667029 | Zhong et al. | Dec 2003 | B2 |
6672385 | Kilaas et al. | Jan 2004 | B2 |
6679324 | Boer et al. | Jan 2004 | B2 |
6692766 | Rubinstein et al. | Feb 2004 | B1 |
6699503 | Sako et al. | Mar 2004 | B1 |
6699611 | Kim et al. | Mar 2004 | B2 |
6786285 | Johnson et al. | Sep 2004 | B2 |
6817416 | Wilson et al. | Nov 2004 | B2 |
6840321 | Restarick et al. | Jan 2005 | B2 |
6857476 | Richards | Feb 2005 | B2 |
6863126 | McGlothen et al. | Mar 2005 | B2 |
6938698 | Coronado | Sep 2005 | B2 |
6951252 | Restarick et al. | Oct 2005 | B2 |
6976542 | Henriksen et al. | Dec 2005 | B2 |
7004248 | Hoffman et al. | Feb 2006 | B2 |
7011076 | Weldon et al. | Mar 2006 | B1 |
7084094 | Gunn et al. | Aug 2006 | B2 |
7128151 | Corbett | Oct 2006 | B2 |
7159656 | Eoff et al. | Jan 2007 | B2 |
7185706 | Freyer | Mar 2007 | B2 |
7290606 | Coronado et al. | Nov 2007 | B2 |
7318472 | Smith | Jan 2008 | B2 |
7322412 | Badalamenti et al. | Jan 2008 | B2 |
7325616 | Lopez de Cardenas et al. | Feb 2008 | B2 |
7395858 | Barbosa et al. | Jul 2008 | B2 |
7409999 | Henriksen et al. | Aug 2008 | B2 |
7413022 | Broome et al. | Aug 2008 | B2 |
7419002 | Dybevik et al. | Sep 2008 | B2 |
7426962 | Moen et al. | Sep 2008 | B2 |
7469743 | Richards | Dec 2008 | B2 |
7493947 | Ross | Feb 2009 | B2 |
7673678 | MacDougall et al. | Mar 2010 | B2 |
7762341 | Hammer | Jul 2010 | B2 |
7896028 | Weyer et al. | Mar 2011 | B2 |
7896082 | Lake et al. | Mar 2011 | B2 |
7913765 | Crow et al. | Mar 2011 | B2 |
7942206 | Huang et al. | May 2011 | B2 |
20020020527 | Kilaas et al. | Feb 2002 | A1 |
20020125009 | Wetzel et al. | Sep 2002 | A1 |
20030221834 | Hess et al. | Dec 2003 | A1 |
20040021107 | Kimura et al. | Feb 2004 | A1 |
20040035578 | Ross et al. | Feb 2004 | A1 |
20040052689 | Yao | Mar 2004 | A1 |
20040108107 | Wittrisch | Jun 2004 | A1 |
20040144544 | Freyer | Jul 2004 | A1 |
20040194971 | Thomson | Oct 2004 | A1 |
20050016732 | Brannon et al. | Jan 2005 | A1 |
20050126776 | Russell | Jun 2005 | A1 |
20050171248 | Li et al. | Aug 2005 | A1 |
20050178705 | Broyles et al. | Aug 2005 | A1 |
20050189119 | Gynz-Rekowski | Sep 2005 | A1 |
20050199298 | Farrington | Sep 2005 | A1 |
20050207279 | Chemali et al. | Sep 2005 | A1 |
20050241835 | Burris et al. | Nov 2005 | A1 |
20060012439 | Thomsen et al. | Jan 2006 | A1 |
20060042798 | Badalamenti et al. | Mar 2006 | A1 |
20060048936 | Fripp et al. | Mar 2006 | A1 |
20060048942 | Moen et al. | Mar 2006 | A1 |
20060076150 | Coronado et al. | Apr 2006 | A1 |
20060086498 | Wetzel et al. | Apr 2006 | A1 |
20060108114 | Johnson | May 2006 | A1 |
20060118296 | Dybevik et al. | Jun 2006 | A1 |
20060175065 | Ross | Aug 2006 | A1 |
20060180320 | Hilsman et al. | Aug 2006 | A1 |
20060185849 | Edwards et al. | Aug 2006 | A1 |
20060266524 | Dybevik | Nov 2006 | A1 |
20060272814 | Broome et al. | Dec 2006 | A1 |
20060273876 | Pachla et al. | Dec 2006 | A1 |
20070012444 | Horgan et al. | Jan 2007 | A1 |
20070034385 | Tips et al. | Feb 2007 | A1 |
20070039732 | Dawson et al. | Feb 2007 | A1 |
20070039741 | Hailey, Jr. | Feb 2007 | A1 |
20070044962 | Tibbles | Mar 2007 | A1 |
20070131434 | MacDougall et al. | Jun 2007 | A1 |
20070246210 | Richards | Oct 2007 | A1 |
20070246213 | Hailey, Jr. | Oct 2007 | A1 |
20070246225 | Hailey, Jr. et al. | Oct 2007 | A1 |
20070246407 | Richards et al. | Oct 2007 | A1 |
20070272408 | Zazovsky et al. | Nov 2007 | A1 |
20080035349 | Richard | Feb 2008 | A1 |
20080035350 | Henriksen et al. | Feb 2008 | A1 |
20080053662 | Williamson et al. | Mar 2008 | A1 |
20080061510 | Li et al. | Mar 2008 | A1 |
20080110614 | Orban | May 2008 | A1 |
20080135249 | Fripp et al. | Jun 2008 | A1 |
20080149323 | O'Malley et al. | Jun 2008 | A1 |
20080149351 | Marya et al. | Jun 2008 | A1 |
20080236839 | Oddie | Oct 2008 | A1 |
20080236843 | Scott et al. | Oct 2008 | A1 |
20080283238 | Richards et al. | Nov 2008 | A1 |
20080296023 | Willauer | Dec 2008 | A1 |
20080314590 | Patel | Dec 2008 | A1 |
20090056816 | Arov et al. | Mar 2009 | A1 |
20090101355 | Peterson et al. | Apr 2009 | A1 |
20090133869 | Clem | May 2009 | A1 |
20090133874 | Dale et al. | May 2009 | A1 |
20090139727 | Tanju et al. | Jun 2009 | A1 |
20090205834 | Garcia et al. | Aug 2009 | A1 |
20090283275 | Hammer | Nov 2009 | A1 |
20100038086 | Bunnell | Feb 2010 | A1 |
20100096140 | Mack | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1385594 | Dec 2002 | CN |
0681087 | Nov 1995 | EP |
1492345 | Nov 1977 | GB |
2421527 | Jun 2006 | GB |
2341405 | Dec 2007 | GB |
2448069 | Oct 2008 | GB |
59089383 | May 1984 | JP |
1335677 | Sep 1987 | SU |
9403743 | Feb 1994 | WO |
WO 0079097 | May 2000 | WO |
WO 0165063 | Feb 2001 | WO |
WO 0177485 | Mar 2001 | WO |
WO 02075110 | Sep 2002 | WO |
2004018833 | Mar 2004 | WO |
WO 2006015277 | Jul 2005 | WO |
WO 2008070674 | Jun 2008 | WO |
Entry |
---|
Optimization of Commingled Production Using Infinitely Variable Inflow Control Valves; M.M, J. J. Naus, Delft University of Technology (DUT), Shell International Exploration and production (SIEP); J.D. Jansen, DUT and SIEP; SPE Annual Technical Conference and Exhibition, Sep. 26-29 Houston, Texas, 2004, Society of Patent Engineers. |
An Oil Selective Inflow Control System; Rune Freyer, Easy Well Solutions; Morten Fejerskkov, Norsk Hydro; Arve Huse, Altinex; European Petroleum Conference, Oct. 29-31, Aberdeen, United Kingdom, Copyright 2002, Society of Petroleum Engineers, Inc. |
Determination of Perforation Schemes to Control Production and Injection Profiles Along Horizontal; Asheim, Harald, Norwegian Institute of Technology; Oudeman, Pier, Koninklijke/Shell Exploratie en Producktie Laboratorium; SPE Drilling & Completion, vol. 12, No. 1, March; pp. 13-18; 1997 Society of Petroleum Engineers. |
Restarick, Henry, Halliburton Energy Services; Horizontal Completion Options in Reservoirs With Sand Problems, Society of Petroleum Engineers, Copyright 1995. |
Dikken, Ben J.; Koninklijke/Shell E & P Laboratorium, Pressure Drop in Horizontal Wells and Its Efect on Production Performance; Nov. 1990, Copyright 1990, Society of Petroleum Engineers. |
“Rapid Swelling and Deswelling of Thermoreversible Hydrophobically Modified Poly(N-Isopropylacrylamide) Hydrogels Prepared by Freezing Polymerisation”, Xue, W., Hamley, I. W. and Huglin, M B., 2002, 43(1) 5181-5186. |
“Thermoreversible Swelling Behavior of Hydrogels Based on N-Isopropylacrylamide with a Zwitterionic Comonomer”, Xue, W., Champ, S. and Huglin, M. B. 2001, European Polymer Journal, 37(5) 869-875. |
Dinarvand, R., D'Emanuele, A (1995) The use of thermoresponsive hydrogels for on-off release of molecules, J. Control. Rel. 36: 221-227. |
Tanaka, T., Nishio, I., Sun. S T., Ueno-Nisho. S. (1982) Collapse of gels in an electric field, Science 218:467-469. |
Ishihara,K., Hamada, N., Sato, S., Shinohara, I., (1984) Photoinduced serlling control of amphiphdilic azoaromatic polymer membrane. J. Polym Sci., Polym. Chem. Ed. 22: 121-126. |
Ricka, J. Tanaka, T. (1984) Swelling of Ionic gels: Quantitative performance of the Donnan Thory. Macromolecules, 17: 2916-2921. |
Stephen P. Mathis, Baker Oil Tools, SPE; “Sand Management: A Review of Approaches and Concerns: SPE 82240”; Presented at the SPE European Formation Damage Conference, Hague, The Netherlands May 13-14, 2003: Copyright 2003, Society of Petroleum Engineers Inc. |
E. Paul Bercegeay, University of Southwestern Louisiana; Charles A. Richard, Baker Oil Tools, Inc. Member Aime, “A One-Trip Gravel Packing System, SPE 4771”; Prepared for the Society of Petroleum Engineers of AIME Symposium on Formation Damage Control, New Orleans, La., Feb. 7-8, 1974; Copyright 1974, American Institute of Mining, Metallurgical and Petroleum Engineers, Inc. |
Number | Date | Country | |
---|---|---|---|
20090101352 A1 | Apr 2009 | US |