The present subject matter relates generally to dishwashing appliances and, more particularly, to a water diverter assembly for a dishwashing appliance.
Dishwashing appliances generally include a tub that defines a wash chamber. Rack assemblies can be mounted within the wash chamber for receipt of articles for washing. In addition, spray-arm assemblies within the wash chamber may be used to apply or direct fluid towards the articles disposed within the rack assemblies in order to clean such articles. As is generally understood, dishwashing appliances may often include multiple spray-arm assemblies, such as a lower spray-arm assembly mounted to the tub at a bottom of the wash chamber, a mid-level spray-arm assembly mounted to one of the rack assemblies, and/or an upper spray-arm assembly mounted to the tub at a top of the wash chamber.
Moreover, dishwashing appliances are typically equipped with at least one pump for circulating fluid through the spray-arm assemblies. However, due to e.g., government regulations related to energy and/or water usage and/or due to desired operational parameters, the pump may not be configured to supply fluid to all of the spray-arm assemblies simultaneously. To address this issue, conventional dishwashing appliances typically use a device, referred to as a diverter, to control the flow of fluid within the dishwashing appliance. For example, the diverter typically incorporates a valve that is used to selectively control which spray-arm assemblies receive fluid.
Unfortunately, conventional diverters typically correspond to complex, multi-component assemblies that are often quite expensive and/or difficult to install. For instance, diverters exist that are configured to be mechanically coupled directly to the dishwasher's pump and, thus, must include complex geometries for incorporating the diverter valve and for routing the diverter through the tub. To remove components, some manufacturers have attempted to integrate portions of the diverter into the pump or the tub, such as by molding such portions directly into the pump or the tub. While such a solution may allow for a reduction in the complexity of the diverter, the integrated nature of the design increases manufacturing costs and limits the interchangeability of the diverter.
Accordingly, a simple, cost-effective diverter assembly that can be separately installed within a dishwashing appliance would be welcomed in the technology.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present subject matter is directed to a dishwashing appliance that generally includes a tub defining a wash chamber. The tub may include a top wall, a bottom wall and sidewalls extending between the top and bottom walls. The dishwashing appliance may also include a first spray-arm assembly housed within the wash chamber, a second spray-arm assembly housed within the wash chamber, a pump configured to deliver fluid into the wash chamber and a diverter assembly in fluid communication with the pump. The diverter assembly may generally include a diverter head having a body portion and first and second outlets. The body portion and the first and second outlets may form a single unitary component. In addition, the first outlet may be configured to be directly coupled to the first spray-arm assembly and the second outlet may be configured to be directly coupled to a conduit in fluid communication with the second spray-arm assembly. The diverter assembly may also include a valve housing configured to be coupled to the diverter head. The valve housing may define an inlet in fluid communication with the pump and may at least partially house a diverter valve configured to divert the fluid received via the inlet to either the first outlet or the second outlet. Moreover, the diverter assembly may be configured to be mounted directly to the bottom wall of the tub.
In another aspect, the present subject matter is directed to a fluid circulation assembly for a dishwashing appliance. The fluid circulation assembly may generally include a first spray-arm assembly, a second spray-arm assembly, a pump configured to deliver fluid to the first and second spray-arm assemblies and a diverter assembly in fluid communication with the pump. The diverter assembly may generally include a diverter head having a body portion and first and second outlets. The body portion and the first and second outlets may form a single unitary component. Additionally, the first outlet may be configured to be directly coupled to the first spray-arm assembly and the second outlet may be configured to be directly coupled to a conduit in fluid communication with the second spray-arm assembly. The diverter assembly may also include a valve housing configured to be coupled to the diverter head. The valve housing may define an inlet in fluid communication with the pump and may at least partially house a diverter valve configured to divert the fluid received via the inlet to either the first outlet or the second outlet. Moreover, the diverter valve may comprise a ball movable within the valve housing between a first position, wherein the ball is configured to seal off the first outlet such that the fluid directed into the inlet is diverted through the second outlet, and a second position, wherein the ball is configured to seal off the second outlet such that the fluid directed into the inlet is diverted through the first outlet.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
In general, the present subject matter is directed to a diverter assembly for a dishwashing appliance. In several embodiments, the diverter assembly may be configured as a modular assembly that is completely separate from the pump and the tub of the dishwashing appliance. As a result, the diverter assembly may be separately installed, removed and/or replaced within the dishwashing assembly.
As will be described below, the diverter assembly may, in several embodiments, include a diverter head and a valve housing configured to be coupled to one another. The diverter head may be configured as a single, unitary component and may incorporate first and second outlets that directly interface with the lower spray-arm assembly and a conduit coupled to the remaining spray-arm assemblies of the dishwashing appliance, respectively. In addition, the diverter head may incorporate mounting features that allow the diverter assembly to be quickly and easily mounted onto the bottom wall of the dishwasher tub. Moreover, the valve housing may be configured to at least partially house a diverter valve for diverting the flow of fluid through the diverter assembly to either the first outlet or the second outlet of the diverter head.
Referring now to the drawings,
As is understood, the tub 104 may generally have a rectangular cross-section defined by various wall panels or walls. For example, as shown in
As particularly shown in
Additionally, the dishwashing appliance 100 may also include a lower spray-arm assembly 130 that is configured to be rotatably mounted within a lower region 132 of the wash chamber 106 directly above the bottom wall 162 of the tub 104 so as to rotate in relatively close proximity to the rack assembly 122. As shown in
As is generally understood, the lower and mid-level spray-arm assemblies 130, 136 and the upper spray assembly 138 may generally form part of a fluid circulation assembly 140 for circulating fluid (e.g., water and dishwasher fluid) within the tub 104. As shown in
It should be appreciated that, although the dishwashing appliance 100 will generally be described herein as including three spray assemblies 130, 136, 138, the dishwashing appliance may, in alternative embodiments, include any other number of spray assemblies, including two spray assemblies, four spray assemblies or five or more spray assemblies. For instance, in addition to the lower and mid-level spray-arm assemblies 130, 136 and the upper spray assembly 138 (or as an alternative thereto), the dishwashing appliance 100 may include one or more other spray assemblies and/or wash zones for distributing fluid within the wash chamber 106.
The dishwashing appliance 100 may be further equipped with a controller 146 configured to regulate operation of the dishwasher 100. The controller 146 may generally include one or more memory devices and one or more microprocessors, such as one or more general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with a cleaning cycle. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor.
The controller 146 may be positioned in a variety of locations throughout dishwashing appliance 100. In the illustrated embodiment, the controller 146 is located within a control panel area 148 of the door 108, as shown in
Additionally, as shown in
Moreover, as shown in
It should be appreciated that the present subject matter is not limited to any particular style, model, or configuration of dishwashing appliance. The exemplary embodiment depicted in
Referring now to
As shown, the diverter assembly 200 may generally include a diverter head 202 and a valve housing 204 configured to be coupled to the diverter head 202. In general, the diverter head 202 may include a body portion 206 and first and second outlets 208, 210 extending outwardly from the body portion 206. In several embodiments, the diverter head 202 may be formed as a single, unitary component. For example, as shown in the illustrated embodiment, the body portion 206 and the first and second outlets 208, 210 of the diverter head 202 may be formed integrally with one another (e.g., using a 3-D printing process, a molding process and/or any other suitable process) such that the diverter head 202 forms a single unitary component.
Each outlet 208, 210 of the diverter assembly 200 may generally be formed by an outlet body extending outwardly from an upper wall 212 of the body portion 206 to an outlet end of the corresponding outlet. For example, as particularly shown in
As shown in
It should be appreciated that, although the diverter assembly 200 will generally be described herein as including a diverter head 202 having two outlets 208, 210, the diverter head 202 may, in alternative embodiments, include any other number of outlets, including three outlets, four outlets or five or more outlets. For instance, a third outlet (not shown) of the diverter head 202 may be configured to be in fluid communication (e.g., via a suitable conduit) with a different wash zone or spray assembly (not shown) of the dishwashing appliance 100.
Additionally, as shown in the illustrated embodiment, the body portion 206 of the diverter head 202 may generally define a circular shape formed by an annular sidewall 226 extending downwardly from upper wall 212 of the body portion 206. As a result, the annular sidewall 226, together with the upper wall 212, may generally form an open-ended cavity (
Moreover, the diverter head 202 may also include one or more mounting features configured for mounting the diverter assembly 200 to the bottom wall 162 of the tub 104. For example, in several embodiments, the diverter head 202 may include one or more mounting tabs 230 projecting outwardly from the annular sidewall 226 of the body portion 206. Specifically, as particularly shown in
Moreover, the diverter assembly 200 may also include a sealing device 240 for providing a seal between the diverter assembly 200 and the bottom wall 162 of the tub 104. For example, as shown in
As shown in the cross-sectional view of
Referring still to
As shown in the illustrated embodiment, the valve housing 204 may generally include a housing body 250 configured to form a semi-circular shape. As such, when the valve housing 204 is coupled to the diverter head 202, a looped, semicircular flow path 252 (
Additionally, as shown in the illustrated embodiment, the valve housing 204 may include an elongated inlet 260 extending outwardly from the housing body 250. As indicated above, the inlet 260 may generally be configured to be in fluid communication with the pump 142 of the fluid circulation assembly 140 (e.g., via the pump conduit 180 shown in
In several embodiments, the valve housing 204 may be configured to at least partially house a diverter valve 270 configured to divert the fluid received within the housing body 250 via the inlet 260 to either the first outlet 208 or the second outlet 210. As shown in the illustrated embodiment, the diverter valve may, in one embodiment, correspond to a passive ball valve that diverts the flow of fluid within the housing body 250 based on the position of a valve ball 272 within the looped path 252 formed between the valve housing 204 and the diverter head 202. Specifically, as shown in
In such an embodiment, the ball 272 may be moved between the first and second positions due to fluid pressure exerted on the ball 272 during operation of the dishwashing appliance 100. For instance, prior to the operation of the dishwashing appliance 100, the ball 272 may be positioned at an intermediate location between the first and second ends 254, 256 of the looped path 252, such as at the position of the ball 272 shown in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2351342 | Karlstrom | Jun 1944 | A |
2918927 | Clearman | Dec 1959 | A |
3446155 | Guth | May 1969 | A |
3868835 | Todd-Reeve | Mar 1975 | A |
3906967 | Bergeson | Sep 1975 | A |
4004600 | Corn | Jan 1977 | A |
4038103 | Grunewald | Jul 1977 | A |
4060346 | Meyers | Nov 1977 | A |
4097307 | Geiger | Jun 1978 | A |
4221547 | Hoffman | Sep 1980 | A |
5118254 | Ellingson | Jun 1992 | A |
5165435 | Thies | Nov 1992 | A |
5174318 | Dingler | Dec 1992 | A |
5299586 | Jordan | Apr 1994 | A |
5542443 | Yura | Aug 1996 | A |
5630437 | Dries | May 1997 | A |
5924433 | Thies | Jul 1999 | A |
6234184 | Tuller | May 2001 | B1 |
6705330 | Favret | Mar 2004 | B1 |
6877962 | Turner | Apr 2005 | B2 |
8778094 | Blanchard et al. | Jul 2014 | B2 |
9211048 | Bennett | Dec 2015 | B2 |
20020074026 | Kim | Jun 2002 | A1 |
20030159720 | Favret | Aug 2003 | A1 |
20040112412 | Han | Jun 2004 | A1 |
20040173249 | Assmann | Sep 2004 | A1 |
20040200507 | Williams | Oct 2004 | A1 |
20050268948 | Jeong | Dec 2005 | A1 |
20060037632 | Nito | Feb 2006 | A1 |
20060054197 | Yoon | Mar 2006 | A1 |
20060249181 | Wetzel | Nov 2006 | A1 |
20080072936 | Pyo | Mar 2008 | A1 |
20080149148 | Woo | Jun 2008 | A1 |
20080163903 | Bang | Jul 2008 | A1 |
20090133724 | Shin | May 2009 | A1 |
20090266386 | Haltmayer | Oct 2009 | A1 |
20100121497 | Heisele | May 2010 | A1 |
20100139698 | Gnadinger | Jun 2010 | A1 |
20100236588 | Busing | Sep 2010 | A1 |
20100269938 | Busing | Oct 2010 | A1 |
20110114139 | Buesing | May 2011 | A1 |
20120018996 | Stempfle | Jan 2012 | A1 |
20120048313 | Armstrong | Mar 2012 | A1 |
20120097200 | Fountain | Apr 2012 | A1 |
20120266924 | Boyer et al. | Oct 2012 | A1 |
20120285490 | Blanchard | Nov 2012 | A1 |
20120285491 | Blanchard | Nov 2012 | A1 |
20120318389 | Holstein | Dec 2012 | A1 |
20130000762 | Buddharaju | Jan 2013 | A1 |
20140069462 | Becker | Mar 2014 | A1 |
20140076439 | Brignone | Mar 2014 | A1 |
20140130833 | Ryu | May 2014 | A1 |
20140182625 | Lee | Jul 2014 | A1 |
20140224285 | Ham | Aug 2014 | A1 |
20140261582 | Koepke | Sep 2014 | A1 |
20150230687 | Dries | Aug 2015 | A1 |
20150352472 | Haft | Dec 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160215893 A1 | Jul 2016 | US |