The present disclosure relates generally to the field of water filtration systems. More specifically, the present disclosure relates to a water filter manifold including at least one integral distribution valve, which may facilitate installation of water filtration systems, such as, for example in consumer residences.
Water filtration systems designed for use in the home, such as, for example, refrigerator and under-sink systems can be used to remove contaminants from water supplies. Due to increasing quality and health concerns with regard to municipal and well-water supplies, the popularity of such filtrations systems has increased markedly in recent years. For example, the inclusion of water filtration systems in refrigerators, once considered a luxury feature, is now included as a standard feature in all but entry level refrigerator designs.
A typical residential water filtration system generally includes a distribution manifold configured to accept a (prepackaged) specifically designed cartridge filter. The distribution manifold is typically adapted to operatively connect either directly or indirectly to the residential water supply and to points of use and may even allow for a drain connection. Generally, the prepackaged specifically designed cartridge filter sealingly engages the distribution manifold such that an inlet flow channel connecting the residential water supply and the cartridge filter is defined, and at least one outlet flow channel connecting the cartridge filter and the points of use and/or the drain is defined.
In some current water filtration system designs, the distribution manifold includes a pair of outlet flow paths for distributing filtered water. Generally, one of the outlet flow paths supplies water to an automated ice maker while the second outlet flow path supplies water to a user operated faucet for delivering filtered water for drinking, cooking or a variety of alternative uses. To properly channel filtered water through the appropriate filtered water outlet channel, water filtration systems typically include valves mounted between the distribution manifold and the points of use. These valves are separately installed and require additional time to individually wire and leak check.
A representative water filtration system of the present disclosure includes, but is not limited to, a distribution manifold providing for the fast, reliable installation of water filtration systems having a reduced number of downstream connections. Generally, the distribution manifold of the present disclosure is presently preferably manufactured to include one or more in-line valves as integral components of the distribution manifold such that there is no requirement for the inclusion of additional valves downstream of the water filtration system. The in-line valve comprises a relatively compact configuration and mounts directly with the flow system due to the incorporation of the valve seal within the flow channel. The in-line valve may comprise a solenoid valve with a communications assembly allowing the in-line valve to be opened and closed in response to an external input.
In one aspect, the present disclosure is directed to a water filtration system comprising a cartridge filter and a manifold. The cartridge filter comprises a filter circuit while the filtration manifold comprises an inlet circuit and a distribution circuit wherein the filter circuit, inlet circuit and the distribution circuit define a system flow circuit. The filtration manifold comprises at least a first in-line valve such that a valve stop is located within the system flow circuit. The valve stop selectively opens and seals with respect to a valve seat integral to the system flow circuit.
In another aspect, the present disclosure is directed to a water filtration manifold having an inlet fluid circuit and a distribution fluid circuit. The manifold can be connectable, such as rotationally or linearly, to a cartridge filter such that a system flow circuit is defined. The manifold includes at least one in-line valve that is selectively opened or closed based upon an external input to the in-line valve.
In a further aspect, the present disclosure is directed to a method for reducing the installation time of a water filtration system through the use of a manifold assembly incorporating at least one in-line valve.
Furthermore, the present disclosure is directed to a connector structure for connecting tubing, the connector comprising a male connector body and a female connector body. The male connector body comprises a first internal throughbore and an insertion portion with a, presently preferably, tapered tip having a relatively larger external diameter as compared to the axis of the taper and a retention portion, presently preferably, defined by a circumferential flange. The female connector body comprises a second internal throughbore, an internal circumferential recess and a plurality of retaining members. A length of tubing can be slidingly inserted through the second internal throughbore, and the length of tubing can slidingly engage the insertion portion with the tapered tip residing within the length of tubing. The tubing, presently preferably, has an internal diameter less than the largest diameter of the tapered tip resulting in an expansion of the tubing diameter over the insertion portion. The male connector body is operably connected with the female connector body by sliding the insertion portion into the female connector body such that the plurality of retaining members engage the circumferential flange thereby securely engaging the tubing against the tapered tip.
The above summary of the various aspects of the present disclosure is not intended to describe in detail each illustrated embodiment or the details of every implementation of the present disclosure. The figures in the detailed description that follow more particularly exemplify these representative embodiments. These, as well as other objects and advantages of the present disclosure, will be more completely understood and appreciated by referring to the following more detailed description of the described representative, exemplary embodiments of the present disclosure in conjunction with the accompanying drawings.
An improved water filtration manifold for use in conjunction with a water filter for filtering water in a residential water filtration system generally comprises a selectively actuated valve within a manifold flow channel. Generally, the manifold can be operatively connected to a cooperative element, such as the interior of an appliance or a cabinet, such that the replaceable cartridge filters can be selectively operatively connected and detached from the manifold as the filtering capacity of the cartridge filter is consumed or exhausted. The manifold comprises a fastener component that cooperates with a compatible fastener component operatively positioned on the cartridge filter to create an operable water filtration system. The manifold also includes inlet and outlet flow channels that define continuous flow paths from a water source, through the water filtration system and to points of use or to a drain. The manifold can also be used in embodiments separate from an appliance or cabinet, such as embodiments with a support stand or the like for free standing or mounted placement in other convenient locations.
The distribution manifold, as described herein, comprises an integral in-line valve located within the flow channels, such as, for example, an outlet flow channel. The function of the outlet valves is to provide for the delivery of filtered water to points of use based on inputs from an end use location, such as, for example, from a water tap, or from an automated input, such as, for example, from an automated ice machine. The outlet valves are, presently preferably, integral components of the distribution manifold such that no significant additional installation time is required to install stand-alone valves and such that the number of potential leak points within the water filtration system is reduced. In some presently preferably representative embodiments, the distribution manifold comprises a plug-style connector for completing a control circuit between the inputs and the outlet valves such that individual wiring of the outlet valves is not required. In one representative embodiment, the outlet valve comprises an in-line solenoid valve. However, other in-line valves having assembly characteristics that result in the desired performance could be used as well.
A representative water filtration system 80 of the present disclosure is illustrated schematically in
As illustrated in a filtering embodiment, an inlet water stream 90 flows into the manifold assembly 82 at which point the inlet water steam 90 can be directed into the cartridge filter 84. Within the cartridge filter 84, the inlet water stream 90 is directed through the filter element 86 wherein impurities present within the inlet water stream 90 are removed and the filtered water exits the filter cartridge as a filtered water stream 92. The filtered water stream 92 can optionally be divided into any number of distribution streams 94a, 94b using a like number of inline valves 96a, 96b, although, in some representative alternative embodiments, a single distribution stream can be use with a water dispenser, an ice maker or the like. Distribution steams 94a, 94b can then be directed to points-of-use, such as, but not limited to, a water tap 100a, an ice maker 100b or other similar points-of-use. Water tap 100a can selectively open and close in-line valve 96a through a control circuit 98a while ice maker 100b can selectively open and close in-line valve 96b through a control circuit 98b. In some embodiments, control circuit 98b can also comprise a controller 99, for example a microprocessor or programmable logic controller (PLC).
As illustrated in
Filter interface 102 comprises a filter insertion portion 114 and a manifold attachment portion 116. Filter insertion portion 114 comprises an insertion projection 118 adapted for insertion into the cartridge filter 84. Manifold attachment portion 116 comprises a pair of interface members 120a, 120b. Filter interface 102 comprises a filtered water throughbore 122 and a pair of unfiltered water throughbores 124a, 124b, each of these throughbores connecting the filter insertion portion 114 with the manifold attachment portion 116 as illustrated in the end view of
Referring to
While valve plunger 106a is further described and depicted with respect to a specific embodiment, it will be understood that valve plunger 106b can have other designs within the skill in the art for incorporation into suitable in-line valves based on the disclosure herein. Valve plunger 106a as illustrated in
Valve body 108 comprises a connecting portion 162 and a mounting portion 164. Mounting portion 164 includes three tubular projections including an inlet projection 166 and a pair of outlet projections 168a, 168b as well as a pair of projecting tabs 169a, 169b. Inlet projection 166 defines a continuous inlet throughbore 170 extending to connecting portion 162 and corresponding to unfiltered water throughbore 140. Outlet projections 168a, 168b define continuous outlet throughbores 172a, 172b extending to connecting portion 162 and corresponding to filtered water throughbores 138a, 138b. Outlet projections 168a, 168b have an interior diameter dimensioned to accommodate hollow-ended projections 136a, 136b and valve plungers 106a, 106b. As illustrated in
As illustrated, solenoid coils 110a, 110b comprise standard, copper wound coil windings encapsulated within a plastic body 178 or other appropriate materials. A plug connector 179 is typically wired to solenoid coils 110a, 110b to facilitate operative connection with a control circuit (not depicted). Solenoid coils 110a, 110b generally have a circular cross-section, each having a coil throughbore 180 with a circular cross-section. Coil throughbore 180 is dimensioned so as to have an inner diameter slightly larger than the outer diameter of outlet projections 168a, 168b.
While the valve is illustrated as a particular solenoid valve having specific advantages, other embodiments of the valve can be used. For example, in some possible embodiments, a valve is integral with the manifold in that the valve seat is molded into a monolithic structure with a flow channel. This integral valve may or may not have a valve closure element in-line with the flow channel. For example, in one possible alternative embodiment, the integral valve may have a rotating valve closure member that rotates against the valve seat to open or close the valve by positioning a valve channel through the ball member appropriately. In other possible embodiments, the valve comprises an in-line valve closure element that is not actuated with a solenoid coil. For example, an in-line valve closure element has a valve member that moved up to or away from a valve seat by motion along the axis of the flow. While the motion can be controlled with a solenoid coil to eliminate a connection through the wall of the flow channel to the valve element, a mechanical member can be used to move the in-line valve element, such as, for example, by rotating an asymmetrical knob that contacts a surface of the flow element to move the flow element along the flow path. The mechanical connection to the asymmetrical knob exits the flow channel through a sealed opening to a stepper motor or other suitable motor. It is believed that a considerable number other possible embodiments incorporating the teachings of the present disclosure can be readily designed by a person of ordinary skill in the art based on the present disclosure.
As illustrated in
In general, manifold assembly 82 is assembled such that the combination of filter interface 102, manifold body 104, valve plungers 106a, 106b, valve body 108, solenoid coils 110a, 110b and tubing retainer 112 define a functional manifold having a single unfiltered water inlet flow path and at least one and possibly more filtered water outlet flow paths, with a pair of outflow paths being illustrated in the Figures. Filter interface 102 is positioned such that manifold attachment portion 116 is in proximity to filter engagement portion 126 on manifold body 104. Interface members 120a, 120b are guided into a pair of bores (not shown) presented on filter engagement portion 126 such that filtered water throughbore 122 is aligned with the single filtered water throughbore 139 on the filter engagement portion 126 while the unfiltered water throughbores 124a, 124b are aligned with the pair of unfiltered water throughbores 141a, 141b on the filter engagement portion 126. Filter interface 102 is operatively connected to manifold body 104 using any suitable bonding process, such as, for example, sonic welding, adhesives or a combination of suitable bonding processes.
Next, valve plungers 106a, 106b are inserted into the outlet projections 168a, 168 from the connecting portion 162 of valve body 108 such that the plunger seal 144 is in proximity to the angled interior surface 174 in each interior throughbore 176. Valve body 108 is then positioned such that connecting portion 162 is in proximity to distribution portion 128 with hollow-ended projections 136a, 136b located within outlet projections 168a, 168b. Valve body 108 is operatively connected to manifold body 104 using a suitable bonding process such as sonic welding, adhesives or a combination of suitable bonding processes. When operatively connected, outlet flow paths are defined between filtered water throughbores 138a, 138b and outlet throughbores 172a, 172b while an inlet flow path is defined between inlet throughbore 170 and unfiltered water throughbore 140.
Once valve body 108 is operatively connected to manifold body 104, solenoid coils 110a, 110b can be operatively positioned such that their coil throughbores 180 are operatively positioned with outlet projections 168a, 168b inserted within the interior of the coils. Specifically, solenoid coil 110a slides over outlet projection 168a while solenoid coil 110b slides over outlet projection 168b. Solenoid coils 110a, 110b are held in operative position by operatively positioning tubing retainer 112 such that the ends of outlet projections 168a, 168b slide into retainer outlet bores 182a, 182b while the end of inlet projection 166 slides into inlet bore 184. Tubing retainer 112 and outlet projections 168a, 168b as well as inlet projection 166 are operatively connected by a suitable bonding process such as sonic welding, adhesives or a combination of suitable bonding processes.
The tubing can include, but is not limited to, a barbed end for insertion into the retainer outlet bores 182a, 182b and inlet bore 184 such that the barb is retained by the tubing retainer 112 as described in U.S. patent applications Ser. Nos. 09/918,316 and 10/210,890, both of which are hereby incorporated by reference to the extent not inconsistent with the present disclosure. Generally, the bonding process that secures tubing retainer 112 to valve body 108 results in a permanent connection between the barbed tubing and the manifold assembly 82.
Alternatively, retainer outlet bores 182a, 182b and inlet bore 184 can be configured for a snap closure attachment with a length of non-barbed tubing 199 using a connector 200 as depicted in
In one possible alternative embodiment illustrated in
Once assembled, manifold assembly 82 defines a continuous inlet flow path from inlet bore 184, through inlet throughbore 170, into unfiltered water throughbore 140 where it is subsequently divided into unfiltered water throughbores 124a, 124b and into an operatively connected cartridge filter. As illustrated, a pair of outlet flow paths are defined starting with filtered water throughbore 122 which is separated into filtered water throughbores 138a, 138b which flow into outlet projections 168a, 168b and finally to points of use through retainer outlet bores 182a, 182b.
In use, manifold assembly 82 can be a component in the water filtration system 80 that can also include but is not limited to, inlet and outlet tubing, the cartridge filter 84 and some form of controller, either automatic or manual. Generally, manifold assembly 82 is mounted to a cooperative element, for example the interior of a refrigerator, using mounting members 132a, 132b operatively connected directly to a mounting surface or to some form of mounting bracket. Mounting members 132a, 132b can be cylindrical such that manifold assembly 82 can rotate about mounting members 132a, 132b such that attaching or removing cartridge filters is made easier by rotating the water filtration system away from the mounting surface. Rotation of the water filtration system is typically limited through contact of rotation stops 134a, 134b with the mounting surface.
The cartridge filter 84 can be operatively connected to the manifold assembly 82 using the features present on the filter interface 102 and manifold body 104 and features present on the cartridge filter 84. Rotational attachment of the cartridge filter 84 to the manifold assembly 82 can take many forms, for example the forms depicted and describe in U.S. patent applications Ser. Nos. 09/618,686, 10/196,340, both of which are hereby incorporated by reference to the extent not inconsistent with the present disclosure. In one possible representative alternative arrangement, cartridge filter 84 and manifold assembly 82 can be linearly engaged using the forms and features described in U.S. patent application Ser. No. 10/210,890, which is hereby incorporated by reference to the extent not inconsistent with the present disclosure.
Solenoid coils 110a, 110b are generally wired to a control circuit using plug connector 179 such that an external input from the control circuit can energize the solenoid coils 10a, 110b. Through the use of plug connector 179, manifold assembly 82 can be integrated quickly, easily and reliably with a variety of potential control inputs. In one embodiment, the external input can comprise a manually generated input such as a water tap, push-button or lever, that a user interfaces with when filtered water is desired. In another possible representative embodiment, the external input comprises an automatically generated input from an automated system, such as controller 99 for example, a microprocessor or PLC or other automated system such as an ice maker or a storage tank with a level switch, that requests filtered water as part of its automated function. In this manner, the energizing of solenoid coils 110a, 110b can be both manually and automatically initiated either simultaneously or independently of one another.
Generally, when the solenoid coils 10a, 10b are not energized, valve plungers 106a, 106b are directed by springs 137a, 137b located between the plunger members 142 and hollow-ended projections 136a, 136b such that plunger seals 144 sealingly engage the angled interior surfaces 174, as illustrated in
When one or both of solenoid coils 110a, 110b are energized, a magnetic field is created by the copper windings. With respect to valve member 106a for example, the magnetic properties of plunger member 142 cause valve member 106a to be aligned within the induced magnetic field. Proper positioning of the magnetic field is accomplished through the interaction of projecting tabs 169a with solenoid coil 110a during the assembly process. As such, the spring 137a between plunger member 142 and hollow-ended projection 136a is compressed as illustrated in
By incorporating valve members 106a, 106b or the like into manifold assembly 82, the use of separate, individual valves downstream of the water filtration assembly can be avoided or at least reduced. This can result in fewer connections and assembly parts which can subsequently reduce assembly costs as well as eliminating potential leak points.
While the present disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and have been described in detail. It should be understood, however, that the intention is not to limit the present disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims.
The present application claims priority to U.S. Provisional Application No. 60/498,013, entitled “WATER FILTER MANIFOLD WITH INTEGRAL VALVE,” filed Aug. 27, 2003, the disclosure of which is hereby incorporated by reference to the extent not inconsistent with the present disclosure.
Number | Date | Country | |
---|---|---|---|
60498013 | Aug 2003 | US |