Not Applicable.
This invention relates to dispensing, and more particularly to a faucet-mounted flavored water dispenser.
Water filter devices for use in the home and attached to faucets are well known in the art. Such devices typically provide water filtration in one mode, and a filter bypass in a second mode. Faucet-mounted products made by Brita, for example, are exemplary of such devices.
Soda dispensers are also known in the art, such dispensers typically having one mixing valve for each flavor of soda for mixing a syrup with a pressurized supply of carbonated water. Such dispensers are too large and bulky for use on a typical kitchen faucet, however.
As such, there is a need for a combination filter and flavored drink dispenser that can be used on a typical home kitchen faucet. US Patent Application 2005/0258082 to Lund et al. on Nov. 24, 2005, teaches such a device. However, such a device has the drawbacks that flavor additive is not adequately rinsed out of the device between uses. In the embodiment illustrated in
Therefore, there is a need for a dispensing device that not only provides for the user's selection of one of a plurality of flavors or beverage types, but that also prevents contamination of a previous flavor when dispensing an alternate flavor. Further, such a needed device would allow new flavors to be added easily, and would monitor the age of concentrated flavor formulas and the age of the filter, in order to indicate to the user when same have reached a predetermined age. Still further, such a needed device would allow the user to select a pre-set volume of mixed beverage, and then would detect when the user has placed a receptacle under the mixed beverage outlet to activate the dispenser and delivered the pre-set volume. The present invention accomplishes these objectives.
The present device is a dispenser for dispensing a mixture of water and one of a plurality of concentrated formulas. Such concentrated formulas may be tea extracts, fruit extracts, or the like, and are in liquid form. When mixed with water in the proper ratio, the result is a reconstituted beverage such as lemonade or tea, for example.
The dispenser comprises a housing that retains therein an electronic controller. A water inlet is connected to a pressurized water source and includes a water inlet valve that is electrically controlled and connected to the controller. A mixture reservoir is in fluid communication with the water inlet valve through a water conduit disposed within the housing. The mixture reservoir is further in fluid communication with a mixture outlet through which the mixture of water and one of the concentrate formulas exits the dispenser.
A flow meter is disposed within the water conduit and communicates to the controller a flow rate of water entering the water conduit. A plurality of concentrate reservoirs each adapted to receive the concentrated formulas are each in fluid communication with the mixture reservoir. Each concentrate reservoir has a concentrate reservoir valve connected to the controller and capable of delivering a metered volume of the concentrated formula into the mixture reservoir when signaled by the controller.
A first presence detector is disposed proximate the mixture outlet on the housing and is electrically connected to the controller. The first presence detector is capable of detecting the presence of an object, such as a drinking cup, proximate the mixture outlet.
A selector knob extends through the housing and is electrically connected to the controller. The selector knob has at least one manually selectable position representative of each concentrate reservoir. A display means may be fixed to the housing for indicating which of the plurality of concentrate reservoirs is selected by the selector knob.
In one embodiment of the invention, the dispenser further includes a bypass outlet that is in fluid communication with the water inlet through a bypass valve disposed at least partially within the housing. In such an embodiment, a second presence detector may be disposed proximate the bypass outlet of the housing and electrically connected to the controller.
A water filter may be included within the housing and disposed between and in fluid communication with the water inlet and the bypass valve, such that water flowing through the water inlet 3 is filtered before either exiting the bypass outlet or the mixture outlet.
In use, with the water inlet connected to the pressurized water source and each concentrate reservoir filled with one of the concentrated formulas, in response to the object being detected proximate the mixture outlet, the controller actuates the water inlet valve, determines the volume of water flowing into the water conduit, and actuates one of the concentrate reservoir valves associated with the position of the selector knob to create the mixture of a predetermined ratio of the concentrated formula and the water to be dispensed through the mixture outlet. Upon detection that the object has been removed, the water inlet valve is closed.
The present device not only provides for the user's selection of one of a plurality of flavors or beverage types, but also prevents contamination of a previous flavor when dispensing an alternate flavor. Further, the present invention allows concentrated formulas to be exchanged easily, and monitors the age of concentrated flavor formulas and the age of the filter, in order to indicate to the user when same have reached a predetermined age. Still further, the present device allows the user to select a pre-set volume of mixed beverage and actively detects when the user has placed a receptacle under the mixed beverage outlet to activate the dispenser and delivered the pre-set volume automatically, without the user needing to touch any part of the device other than the selector knob. Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
The dispenser 10 comprises a housing 20 that retains therein an electronic controller 200. The controller includes a power input 201, such as a battery, as is known in the art. The housing 20 is preferably a rigid plastic, but may also be made from stainless steel or other suitably rigid and durable material.
A water inlet 30 is connected to a pressurized water source 15, such as a standard water faucet left in an “on” position (
A mixture reservoir 70 is in fluid communication with the water inlet valve 38 through a water conduit 40 disposed within the housing 20. The mixture reservoir 70 is further in fluid communication with a mixture outlet 50 traversing a lower side 34 of the housing 20, through which the mixture of water 16 and one of the concentrate formulas 80 exits the dispenser 10. Preferably the mixture reservoir 70 is made of plastic or other material that is easily cleaned and to which water 16 and the concentrated formulas 80 do not stick. The mixture reservoir 70 may further include a non-stick coating such as Teflon, or the like (not shown).
A flow meter 320 is disposed within the water conduit 40 and communicates to the controller 200 through a second electronic signal line 240 a flow rate of water 15 entering the water conduit 40. The pressurized water 16 drives the flow meter 320, which may be a small impeller or the like (not shown) connected to a sensor that detects and quantifies rotation. Such a flow meter is disclosed in US Patent Application 2006/0153165 to Beachy, published on Jul. 13, 2006, for example.
A plurality of concentrate reservoirs 60 each adapted to receive a volume V of one of the concentrated formulas 80 are each open to the upper side 36 of the housing 20 and are each in fluid communication with the mixture reservoir 70. Each concentrate reservoir 60 has a concentrate reservoir valve 62 connected to the controller 200 through a concentrate reservoir valve signal line 64 and capable of delivering a metered volume Vi (where Vi<V) of the concentrated formula 80 into the mixture reservoir 70 when signaled by the controller 200 (
A first presence detector 330, such as an infrared or ultrasonic detector, as are known in the art, is disposed proximate the mixture outlet 50 on the lower side 34 of the housing 20 and is electrically connected to the controller 200 through a third electronic signal line 340. The first presence detector 330 is capable of detecting the presence of an object 12, such as a receptacle 13, proximate the mixture outlet 50. Such a presence detector 330 may be a Sharp Model #GP2D12 or GP2D15 infrared sensor for use with faucets, for example.
A selector knob 135 extends through the housing 20 and is electrically connected to the controller 200 through a fourth signal line 136 (
In one embodiment of the invention, illustrated in
In such an embodiment, a second presence detector 350 may be disposed proximate the bypass outlet 100 on the lower side 34 of the housing 20 and electrically connected to the controller 200 through a fifth electronic signal line 360. The second presence detector 350 is adapted to detect the presence of an object proximate the bypass outlet 100, whereby when the controller 200 detects an object 12 proximate the bypass outlet 100, the controller 200 may actuate the inlet valve 38, and upon detecting that the object 12 has moved away from the bypass outlet 100, the controller 200 may close the inlet valve 38.
A water filter 180 may be included within the housing 20 and disposed between and in fluid communication with the water inlet 30 and the bypass valve 110, such that water 16 flowing through the water inlet 30 is filtered before either exiting the bypass outlet 100 or the mixture outlet 50 (
In one embodiment of the invention, each concentrate reservoir 60 may be selectively removable from the housing 20, so as to be washed for example in a dishwasher (not shown). Alternately, each concentrate reservoir 60 may take the form of a cartridge (
In use, with the water inlet 30 connected to the pressurized water source 15 and each concentrate reservoir 60 filled with one of the concentrated formulas 80, in response to the object 12 being detected proximate the mixture outlet 50, the controller 200 actuates the water inlet valve 38, determines the volume of water 16 flowing into the water conduit 40, and actuates one of the concentrate reservoir valves 62 associated with the position 137 of the selector knob 135 to create the mixture 18 of a predetermined ratio of the concentrated formula 80 and the water 16 to be dispensed through the mixture outlet 50. Upon detection that the object 12 has been removed, the water inlet valve 38 is closed.
In one embodiment, the selector knob 135 may further include a plurality of manually selectable preset volume positions 138 each associated with one of the concentrate reservoirs 60, such as “12 ounces,” for example. As such, with the selector knob 135 at one of the manually selectable preset volume positions 138 corresponding to one of the concentrated formulas 80, when the controller 200 through the first presence detector 330 detects an object 12 proximate the mixture outlet 50, the controller 20 actuates the corresponding concentrate reservoir valve 62 to dispense the metered volume Vi of the selected concentrate formula 80 into the mixing reservoir 70 and opens the inlet valve 38 until the preset volume of water 16 has entered the water conduit 40, as determined by the flow meter 320. The present volume of water 16 and the concentrated formula 80 mix in the mixing reservoir 70 and exit out of the mixture outlet 50. The controller 200 then closes the inlet valve 38 upon detecting that the preset volume of water 16 has entered the water conduit 40. Optionally, the controller 200 may then, for a period of time, open the inlet valve 38 to flush the mixture reservoir 70 and mixture outlet 50 with water 16 to rinse same.
Each low-level indicator 150 is visible from outside of the housing 20 and is optionally included on each concentrate reservoir 60 and adapted to indicate when the concentrate reservoir 60 is substantially empty, such as by a flashing or red or yellow LED located proximate each selectable position 137 of the selector knob 135 (
In one embodiment of the invention, the mixture outlet 50 includes a content analyzer 260 in fluid communication therewith and adapted for sending a sensed particulate level signal of the mixture 18 of water 16 and the concentrated formula 80 to the controller 20 via a sixth electronic signal line 270 (
While a particular form of the invention has been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. For example, various numbers and sizes of formula reservoirs 60 may be utilized. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application 60/917,667, filed on May 13, 2007.
Number | Name | Date | Kind |
---|---|---|---|
2328110 | Thompson et al. | Aug 1943 | A |
3519134 | Hassinger | Jul 1970 | A |
4676896 | Norton | Jun 1987 | A |
4917155 | Koblasz et al. | Apr 1990 | A |
5114048 | Minke | May 1992 | A |
5151179 | Bach et al. | Sep 1992 | A |
5290443 | Norton | Mar 1994 | A |
5922378 | Kagan et al. | Jul 1999 | A |
5931343 | Topar et al. | Aug 1999 | A |
6227265 | Skell et al. | May 2001 | B1 |
D453952 | Gaston et al. | Feb 2002 | S |
6394312 | Endou | May 2002 | B1 |
6478192 | Heyes | Nov 2002 | B2 |
6513337 | Astvatsatrian et al. | Feb 2003 | B1 |
6672097 | Ashley | Jan 2004 | B1 |
7490638 | Sher et al. | Feb 2009 | B2 |
20050145548 | Rhoades | Jul 2005 | A1 |
20050258082 | Lund et al. | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080277019 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60917667 | May 2007 | US |