A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
1. Field of the Invention
This invention is generally related to water flow control systems, and more particularly, to a system and method for controlling the flow of water in a flush of a toilet.
2. General Background and State of the Art
Water flow systems include flush toilets, each of which includes a toilet tank, wherein a flush is created by a flush valve that opens and closes to release water from the tank to the bowl to create a flush. Flush valves are buoyant. Therefore, when a toilet is flushed, the flush valve floats and remains open for a fixed amount of time, until the water in the tank lowers to the point where the buoyant flush valve can no longer float, at which time the flush valve closes.
The most common toilet currently found in the home is a gravity flush tank type toilet. A tank style toilet includes a tank and a toilet bowl. The tank is initially filled through a fill valve. A buoyant flush valve is mounted in the bottom of the tank, which releases the water in the toilet tank to flush the toilet bowl. In addition, a siphon is molded into the bowl. As water enters the bowl, the extra water spills over the edge of the siphon tube and drains away into the sewer pipe. Water enters the bowl at a fast rate, causing the siphon tube to fill, whereupon the siphon flushes the fluid and any waste out of the bowl into the sewer pipe. The bowl is emptied, air enters the siphon tube, and the siphoning process stops. The toilet tank operates to supply a volume of water to the bowl at a sufficient rate to activate the siphon.
The flush valve is mounted in an opening and controls water flow between the tank and the bowl. The flush valve includes a valve seat and a flap lid. Most flush valves operate with a flap lid, also known as a flapper.
There are four common types of flush valves: a flap lid type, an actuator type, a cylinder type, which is also known as a Certain Flush valve or Mansfield valve, and a lift wire type. These four flush valve types, though appearing different in size and shape, all include a flush valve that floats in the open position.
A dual flush toilet has two different flush options for water conservation, a smaller water volume which is used for flushing liquid waste, and a larger water volume which is used for flushing solid waste. Currently, dual flush retrofit kits, for enabling two different flush cycles, have two different flush valves which open and close where water can exit, and two different flush levers, so that the user can select a large flush or a small flush. They require changing the flush lever and flush valve of an existing toilet. Installation of these dual flush retrofit kits typically requires disassembling the entire toilet, so that the flush valve and flush handle can be replaced.
Dual flush toilet specifications outlined by the Environmental Protection Agency for water conservation call for dual flush toilets to use less than a gallon (three liters) of water to flush liquid waste, and approximately one-point-six gallons (six liters) to flush solid waste, which equates to an effective flush volume of one-point-two-eight gallons.
The U.S. Congress mandated that all toilets sold in the U.S. as of Jan. 1, 1994 be Ultra-Low-Flush Toilets (ULFTs) having a maximum average flush volume not exceeding one-point-six gallons (six liters) per flush. The ULFTs are significantly more water efficient then the older toilets which used three-point-five, five, and seven gallons of water per flush.
When a dual flush retrofit kit is used with a ULFT toilet, it increases the amount of water used during a large flush. In particular, many ULFTs use a high water capacity tank, which holds three-point-five gallons, but use an early-closing flapper to achieve a one-point-six gallon flush volume. An early closing flapper has a reduced buoyancy which causes the flapper to close the flush valve before the tank is entirely evacuated of water. As a result, only a fraction of the water in the tank of ULFTs flows through the flush valve to the bowl before the flush valve closes. When a dual flush retrofit kits is installed in a ULFT that uses an early closing flapper, the result is that all three-point-five gallons of water in the tank are used during the full flush cycle. ULFTs are designed to only use one-point-six gallons per flush. However, water consumption can increase to three-point-five gallons per flush during the full flush cycle with dual flush retrofit kit.
Therefore, there has been identified a continuing need to provide system and methods for controlling the flow of water during the flushing of a toilet, to conserve water.
Briefly, and in general terms, in accordance with aspects of the invention, and in a preferred embodiment, by way of example, there is provided a system for controlling the duration and volume of a flow of water in a flush of a toilet, wherein the toilet includes a buoyant flush valve which is non-automated in user actuation thereof to a raised open position. The system includes a converting element, for converting the buoyant flush valve to a non-buoyant flush valve which is non-automated in user actuation thereof to a raised open position. It also includes a programming element, for enabling programming of a controlling time, for controlling the duration and volume of flow of water in a flush of a toilet.
The system also includes a controlling element, connected to the programming element and the non-buoyant flush valve, for retaining the non-buoyant flush valve in a raised open position upon non-automated user actuation of the non-buoyant flush valve to the raised open position, and for releasing the non-buoyant flush valve from the raised open position for closing the non-buoyant flush valve, within the controlling time.
In accordance with other aspects of the invention, there is further provided a system wherein a toilet includes a flush actuator, which is connected to the non-buoyant flush valve, and wherein user actuation of the flush actuator generates non-automated user actuation of the non-buoyant flush valve to the raised open position.
In accordance with other aspects of the invention, the converting element comprises a weighted element, able to be connected to the buoyant flush valve, and a connecting element, for connecting the weighted element to the buoyant flush valve.
In accordance with another aspect of the invention, the programming element is programmable for two controlling times. The two controlling times comprise a small flush time and a large flush time. The small flush time comprises a controlling default flush time. The system is programmable to enable user actuation of the large flush time.
In still further aspects of the invention, the programming element comprises a user interface module, includes a processor, and is programmable for a time within the period of the minimum time required to complete a flush of the toilet to the maximum time required to drain all of the water from a toilet tank. It is positionable at a user-accessible location.
In still further aspects of the invention, the controlling element comprises a control module, which is connected to the programming element and the non-buoyant flush valve. The control module retains the non-buoyant flush valve in the raised open position, and releases the non-buoyant flush valve from the raised open position for closing the non-buoyant flush valve, within the controlling time. The controlling element further includes a connecting element, connected at one end to the controlling element and at the other end to the non-buoyant flush valve. The controlling element includes electro-mechanical elements.
In accordance with further aspects of the invention, the system is able to be used in conjunction with a flush valve already in a toilet, including any of the common types of flush valves currently in use. It does not require replacement of the toilet flush valve.
In another aspect of the invention, the system is retrofittable in a standard toilet tank with a standard toilet tank lid. The controlling sub-system is able to be suspended inside the standard toilet tank, and the programming sub-system is positionable at a user-accessible location, for functionality and aesthetic appeal. The system does not require replacement of any of the wide variety of sizes and shapes of standard toilet tanks and standard toilet tank lids, is not stored inside a specialized toilet tank lid, and does not require specialized tools for installation.
In accordance with another aspect of the invention, the system is able to be installed in a toilet, without converting non-automated actuation of the flush handle to an automated process. Also, the flush valve does not need to be replaced, and the toilet does not need to be disassembled for installation of the system.
In a further aspect of the invention, the system is battery operated, eliminating the need for a potentially dangerous wall outlet plug, and operates efficiently to provide long life and functionality for the batteries.
In still other aspects of the invention, the system enables the connection of a connecting element to the toilet flush chain without the need for disconnecting the flush chain from the flush lever or the flush valve.
In still another aspect of the invention, the system includes thin mounting brackets which mount to all types of lip overhangs of toilet tanks regardless of the thickness or shape of the lip of the tank.
In other aspects of the invention, the programming element comprises a user interface module, and the user interface module includes a sensing element, for sensing the presence of a person and the length of time the person has been using the toilet, and for automatically determining whether to provide a small flush time or a large flush time. The sensing element also includes a time threshold determining element for enabling the user to program a time threshold for the sensing element to determine the type of flush to provide.
These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, which illustrate by way of example the features of the invention.
The system according to the invention comprises a control system 10, for controlling the duration and volume of flow of water in a flush of a toilet 12. It constitutes a programmable multiple flush conversion kit for gravity flush toilets, that provides multiple distinct flush options where the exact volume of water used for each of the multiple options is programmable. The system 10 controls the way the common home toilet 12 works by altering the way a flush valve 14 works, to enable multiple separate flush operations where each flush uses a pre-set amount of water per flush. It is operable on all gravity flush toilets 12, and with all types of buoyant flush valves 14, which operate on the principal of water passing beneath a buoyant flush valve 14 via gravity force.
The control system 10 constitutes a programmable flush valve control system, which enables control of the operation of the flush valve 14 such that the flush valve 14 is no longer buoyant, and the duration of the flush no longer depends on the flush valve 14 losing buoyancy in order to close. By converting the flush valve 14 to a non-buoyant flush valve 16, the control system 10 enables the non-buoyant flush valve 16 to be closed at any programmed time, thus controlling the duration of the flush and the volume of flow of water used.
The toilet 12 includes a flush actuator 18, and a flush actuator connecting element 20 for connecting the flush actuator 18 to the non-buoyant flush valve 16. User actuation of the flush actuator 18 generates non-automated user actuation of the non-buoyant flush valve 16 to the raised open position. The flush actuator connecting element 20 may comprise a chain, metal chain links, plastic chain links, rubber straps, metal ball-bead chains, plastic ball-bead chain, lift wire, or the like.
Referring in the drawings to
As illustrated in FIGS. 3 and 6-7, the control system 10 includes a converting element 22, for converting the buoyant flush valve 14 to a non-buoyant flush valve 16 which is non-automated in user actuation thereof to a raised open position. It further includes a programming element 24, for enabling programming of a controlling time, for controlling the duration and volume of flow of water in a flush of the toilet 12. A controlling element 26 comprising a control module in the system is connected by a flat ribbon cable 76 to the programming element 24. The controlling element 26 is further connected by a control module connecting element 28 to the converting element 22 which connects to the non-buoyant flush valve 16. The control module controlling element 28 retains the non-buoyant flush valve 16 in the raised open position upon non-automated user actuation thereof to the raised open position, and releases the non-buoyant flush valve 16 from the raised open position for closing the non-buoyant flush valve, within the controlling time.
The converting element 22 comprises a weighted element 30, able to be connected to the buoyant flush valve 14 or the flush actuator connecting element 20, and a weighted element connecting element 32, for connecting the weighted element 30 to the buoyant flush valve 14 or the flush actuator connecting element 20.
The weighted element 30 includes a housing 34, weights 36 positionable in the housing 34, and a main channel 38 for insertion therethrough of the flush actuator connecting element 20, The weighted element 30 and provides an anchoring point 40 for attachment and locking thereto of the control module connecting element 20, which anchoring point 40 further includes an opening 42 for extension of the control module connecting element 20 thereinto. The weighted element 30 further includes a clamping element 44, for enabling clamping thereto of the flush actuator connecting element 20. Alternatively, the weighted element 30 may comprise a solid weight which includes a slot, for insertion therethrough of the flush actuator connecting element 20, and which provides an anchoring point for attachment and locking thereto of the control module connecting element 28.
The weights 36 in the housing 34 of the weighted element 30 may comprise weight disks, and the housing 34 for example may hold up to five weight disks available for a total weight of about six ounces. Flush valves that are more buoyant may require most if not all of the weight disks for non-buoyancy. Flush valves that require more weight can have weight disks added, up to the maximum available, while flush valves that require less weight can have weight disks removed. Finger members 46 positioned beneath the bottom weight disk are able to lock the weight disks in place and prevent them from coming out.
The clamping element comprises a spring-loaded tab 44, for enabling securing thereby of the converting element 22 to the flush actuator connecting element 20. The spring-loaded tab 44 enables the weighted element 30 to slide downward on the flush actuator connecting element 20, for positioning thereof, but does not allow the weighted element 30 to be pulled back up without pressing down to unlock the spring-loaded tab 44. Preferably, the weighted element 30 is secured and locked into place directly above the non-buoyant flush valve 16. This arrangement for connecting the weighted element 30 is usable for connecting to flapper type flush valves and lift wire type flush valves.
The control module connecting element 28 may comprise a chain, metal chain links, plastic chain links, rubber straps, metal ball-bead chains, plastic ball-bead chain, lift wire, monofilament, string, or the like.
A weighted element 30 is able to be attached to flush valves such as the flapper type flush valve herein, and to an actuator type flush valve, a lift wire type valve, a tower type flush valve, and the like.
A programming element 24 in the control system, as seen in
The programming element 24 includes a microprocessor which is programmable for a time within the period of the minimum time required to complete a flush of the toilet 12 to the maximum time required to drain all of the water from a tank 50 of the toilet 12. The programming element 24 is programmable for two controlling times, constituting a small flush time and a large flush time. The small flush time comprises a controlling default flush time. The control system 10 is programmable to enable user actuation of the large flush time.
The programming element comprises a user interface module 24 which is programmable. The user interface module 24 includes a top cover 52, which may be transparent to enable elements therein to be visible. The top cover 52 may further include hinges 54 in the back, to enable opening and closing thereof, and a lock 56, which is extendible through a screw hole 58, to prevent tampering with flush time settings. The lock 56 may include the top cover 52 being able to snap in place, and a screw 60 for securing thereof. The user interface module 24 further includes a small flush control dial 62 for setting the small flush time, and a large flush control dial 64 for setting the large flush time, so the user can program the duration of the flush and the volume of water used per flush to the minimum amount the particular toilet 12 requires to complete a flush. As the small flush control dial 62 is turned clockwise, for example, the duration of the flush increases, which increases the amount of water used for the small flush. As the large flush control dial 64 is turned clockwise, for example, the duration of the flush increases, which increases the amount of water used for the large flush.
The user interface module 24 also includes a low battery light emitting diode 66, a flush light emitting diode 68, and a large flush select button 70. When the large flush select button 70 is pressed, for example, the user interface module 24 is notified that, if the toilet 12 is flushed in a time period such as the next ten seconds, a large flush is to be provided. The top cover 52 is able to be pressed to enable actuation of the large flush select button 70. The user interface module 24 further includes a printed circuit board, and a battery compartment 72 which includes a battery cover door and battery contacts 74. Rubber feet and tape may be included to prevent the user interface module 24 from moving or sliding from a location on top of the toilet tank 50. A cable 76, which extends from the user interface module 24 to the controlling element 26, comprises for example a flat ribbon cable, selected so that the toilet lid 48 can be closed without any elevation by the cable 76. A rubber grommet may be used to relieve strain to support the cable 76 at a location where it exits the user interface module 24, and to prevent moisture from entering therein.
The control system 10 further includes the controlling element 26, as seen in
The controlling element of the control system 10 comprises a control module 26, which is connected to the programming element 24 by the cable 76, and to the non-buoyant flush valve 16 by the control module connecting element 28. The control module 26 includes electro-mechanical elements.
The control module 26 retains the non-buoyant flush valve 16 in the raised open position upon non-automated user actuation of the non-buoyant flush valve 16 to the raised open position. It further releases the non-buoyant flush valve 16 from the raised open position for closing thereof. Retention and release of the non-buoyant flush valve 16 by the control module 26 are effected within the controlling time.
The control module 26 includes a spring cover 78, mounted on a spring cover shaft 80. It further includes a pulley 82, mounted on the spring cover shaft 80. A spring is covered by the spring cover 78, and is wound in a circular direction and anchored at two points. When the pulley 82 is rotated in one direction, the spring is wound up, creating a tension such that the spring seeks to turn in the opposite direction. This spring tension preloads the spring. When the control module connecting element 28 and the weighted element 30 locked thereto are pulled out, the preloaded spring gets wound increasingly tighter, such that the spring seeks to retract the control module connecting element 28 and the weighted element 30. The control module connecting element 28 is able to be retained in, and retracted to, wound condition on the pulley 82, and is able to be released from wound condition on the pulley 82.
The spring cover 78 has projections including teeth 84 projecting outwardly from the sides and spikes 86 extending upwardly from the top thereof. A ratchet pawl 88 and a ratchet pawl spring 90 are included in the control module 26. The ratchet pawl 88 includes an extending portion 92 and a depending portion 94. The ratchet pawl 88 is spring loaded by the ratchet pawl spring 90, so that the extending portion 92 is constantly being pulled toward the spring cover projecting teeth 84, and is biased by the ratchet pawl spring 90 into engagement with the spring cover projecting teeth 84.
The ratchet pawl extending portion 92, upon non-automated user actuation of the non-buoyant flush valve 16 to the raised open position, engages a spring cover projecting tooth 84, retaining the non-buoyant flush valve 16 in the raised open position. The spring cover projecting teeth 84 also enable rotation of the spring cover 78 and the pulley in the opposite direction, for enabling retraction of slack in the control module connecting element upon such non-automated user actuation thereof to the raised open position.
The ratchet pawl 88 is able to be pressed out of engagement with the spring cover projecting teeth 84, releasing the control module connecting element 28 and the non-buoyant flush valve 16 locked thereto by the weighted element 30. In the released condition of the non-buoyant flush valve 16, upon disengagement of the ratchet pawl extending portion 92 from a spring cover tooth 84, the spring cover 78 and the pulley 82 are able to rotate in a direction for releasing the control module connecting element 28 from retained and retracted condition on the pulley 82, and for releasing the non-buoyant flush valve 16 from the raised open position for closing the non-buoyant flush valve 16.
The control module 26 further includes a timing gear 96, which includes a cam portion 98 and an engageable teeth portion 100, and a timing gear spring 102. A motor 104 and a worm gear 106 are also included. Depending upon the direction in which the motor 104 turns the worm gear 106, as transmitted through the timing gear engageable teeth portion 100 to the timing gear 96, the timing gear cam portion 98 is either pressed against the ratchet pawl depending portion 94, or is directed away from the ratchet pawl 88. When pressed against the ratchet pawl depending portion 94, the timing gear 96 enables release of the non-buoyant flush valve 16 from the raised open position for closing the non-buoyant flush valve 16. When directed away from the ratchet pawl 88, the timing gear 96 enables retention of the non-buoyant flush valve 16 in the raised open position, and retention of the control module connecting element 28 in wound condition on the pulley 82.
The timing gear spring 102 maintains tension on the timing gear 96 to bias the timing gear 96 in the direction of the timing gear engageable teeth portion 100. The operation of the timing gear spring 102 allows the motor 104 to overrun without damaging the engageable teeth portion 100 of the worm gear 106. It also positions the timing gear 96 so that it is always in contact with the worm gear 106, so that when the motor 104 runs in the either direction, the engageable teeth portion 100 of the timing gear 96 are in contact with the worm gear 106.
Also, the control module 26 includes a movement detecting element, which comprises for example a piezo element 108, for detecting movement of the spring cover 78. The piezo element 108 is a crystal structure which creates an electric charge when a small amount of stress is applied, and which sends the electric charge to the programming element 24 to signal motion sensing. A piezo housing 110 houses the piezo element 108.
A piezo spring wire 112 and a piezo spring wire guide 114 are further included in the control module 26. The piezo spring wire 112 extends outwardly from the piezo element 108 inside the piezo housing 110, extends on top of the piezo spring wire guide 114, and is flicked by rotation of the spring cover extending spikes 86 as the spring cover 78 rotates. The piezo spring wire 112 transfers force received during the flicking thereof to the piezo element 108. When the piezo spring wire 112 is struck by the spring cover extending spikes 86, the piezo element 108 is stressed and sends an electric signal pulse for motion detection to the programming element 24. The piezo spring wire guide 114 directs the piezo spring wire 112 as it gets flicked by the rotating spring cover extending spikes 86.
Further, the control module 26 includes a cap 116, a housing 124, and a pulley housing cover 112. The components of the control module 26 are secured to the cap 116 which is inserted into the housing 124. A sealing ring creates a water-tight seal when the cap 116 is secured to the housing 124. The pulley housing includes the cover 112 for the pulley 82, which includes an enlarged opening 122 for enabling the control module connecting element 28 to exit and enter therethrough in an unobstructed manner. The sealing ring creates a water-tight seal around the housing 124 where the spring cover shaft 80 penetrates the housing 124.
The control module 26 further includes a bracket portion 126 which attaches to it. The housing bracket portion 126 includes a tab portion 128 which is able to securely retain the control module 26 on a rim 130 of the toilet tank 50. The bracket portion 126 is further bendable outwardly to extend over a thicker wall 132 of the toilet tank 50. The bracket portion 126 further includes a cutout to enable the tab portion 128 to be pulled outward for different thicknesses of the toilet tank wall 132. An opening in the bracket portion 126 enables exit and entry from under the bracket portion 126 for the cable 76 which connects the programming element 24 and the control module 26. The bracket portion opening is sealed after installation of the cable 76 to prevent water penetration.
In operation of the control system 10, in a small flush cycle, the user presses the toilet flush actuator 18 to flush the toilet 12. The non-buoyant flush valve 16 inside the toilet 12 rises, which opens the outlet of the toilet tank 50 and water is released into the toilet bowl. The control module connecting element 28 is connected to the weighted element 30, which is locked into place onto the non-buoyant flush valve 16 or the flush actuator connecting element 20. As the non-buoyant flush valve 16 begins to rise, so does the weighted element 30, and the control module connecting element 28 is retracted thereby. As the weighted element 30 rises, the control module connecting element 28 slackens, and this slack is refracted onto the pulley 82.
The rotation of the pulley 82, as it winds up the control module connecting element 28, actuates the piezo element 108. The piezo element 108 is actuated by the piezo spring wire 112 that is being flicked by the upwardly projecting spikes 86 on the top of the spring cover 78. The spring cover 78 is rotating by operation of the spring therein, which has been preloaded by the pulling out of the weighted element 30 when initially pulled out for attaching and locking onto the non-buoyant flush valve 16. The spring cover 78 is connected to the pulley 82 by the common spring cover shaft 80, causing the entire unit to rotate as a single assembly. The slack in the control module connecting element 28 causes the preloaded spring cover 78 to rotate, and thereby causes the pulley 82 to rotate and wind the control module connecting element 28 thereon.
The signal from the piezo element 108, actuated by rotation of the pulley 82, is received by the microprocessor in the user interface module 24. The signal from the piezo element 108 actuates the microprocessor to generate responsive operations in the control system 10. The flush light emitting diode 68 begins to flash. The small flush timer starts to function. The small flush timer consists of time values stored in the microprocessor. The time values for the small flush timer are pre-selected by the user by turning the small flush dial 62 on the user interface module 24 to program the duration of the small flush time. The motor 104 runs forward for approximately fifty milliseconds.
The ratchet pawl 88 is connected to the ratchet pawl spring 90, which is constantly pulling the ratchet pawl 88 in the direction of the outwardly projecting teeth 84 around the spring cover 78. When the timing gear 96 is no longer in contact with the ratchet pawl 88 due to the rotation of the motor 104, the ratchet pawl 88 moves into the engaged position, and locks the assembly of the spring cover 78 and the pulley 82 into the locked position. In the locked position, the spring cover 78 can continue to rotate in one direction but not the other. This allows the control module connecting element 28 to continue to be retracted as more slack is created. The control module connecting element 28 cannot be pulled back out, which would otherwise allow the weighted element 30 to be lowered and the non-buoyant flush valve 16 to be closed. When the ratchet pawl 88 is engaged with the spring cover 78, the non-buoyant flush valve 16 will be held in the open position, such that water will empty from the tank, and the non-buoyant flush valve 16 will not close until the ratchet pawl 88 is disengaged from the spring cover 78.
The microprocessor next waits for the flush timer to reach the small flush time. Upon the flush timer reaching the small flush time, the motor 104 runs in reverse for approximately fifty milliseconds, and rotates the timing gear 96 in the opposite direction, so that the timing gear 96 is fully pressing against the ratchet pawl 88. With the timing gear 96 pressing against the ratchet pawl 88, the ratchet pawl 88 is disengaged from the outwardly projecting teeth 84 of the spring cover 78, and the weighted element 30 is able to be lowered, which closes the non-buoyant flush valve 16 and stops the flush. Because the weighted element 30 counters buoyancy and the force of the spring in the spring cover 78, when the weighted element 30 is released from the locking engagement of the ratchet pawl 88 with the outwardly projecting teeth 84 of the spring cover 78, the weighted element 30 forces the non-buoyant flush valve 16 into the closed position.
Upon the flush timer reaching the end of the small flush time, the flush light emitting diode 68 stops flashing. At the end of the small flush cycle, all timers are reset. The toilet 12 then refills itself as it normally does.
In operation of the control system, in a large flush cycle, the user presses the large flush select button 70. The flush light emitting diode 68 begins flashing for ten seconds. The user has ten seconds to flush the toilet 12 if a large flush is desired, otherwise the system defaults to a small flush.
The user flushes the toilet 12 by pressing the toilet flush actuator 18. The non-buoyant flush valve 16 inside the toilet 12 rises, opening the outlet of the toilet tank 50, and water is released into the toilet bowl. The control module connecting element 28 is connected to the weighted element 30 which is locked onto the non-buoyant flush valve 16, such that, as the non-buoyant flush valve 16 begins to rise, so does the weighted element 30, and the control module connecting element 28 is retracted. As the weighted element 30 rises, the control module connecting element 28 slackens, and this slack is refracted onto the pulley 82. The rotation of the pulley 82, as it winds up the control module connecting element 28, actuates the piezo element 108.
The piezo element 108 is actuated by the piezo spring wire 112 which is flicked by the upwardly projecting spikes 86 of the spring cover 78. The spring cover 78 is rotating by operation of the spring inside the spring cover 78, which has been preloaded by the pulling out of the weighted element 30, when initially pulled out for attaching and locking onto the non-buoyant flush valve 16. The spring cover 78 is connected to the pulley 82 by the common spring cover shaft 80, causing the entire unit to rotate as a single assembly. The slack in the control module connecting element 28 causes the preloaded spring cover 78 to rotate, and thereby causes the pulley 82 to rotate and wind the control module connecting element 28 thereon.
The microprocessor in the user interface module 24 receives a signal from the piezo element 108. The signal from the piezo element 108 actuates the microprocessor to generate responsive operations in the control system 10. The flush light emitting diode 68 starts flashing. The microprocessor starts the large flush timer, which consists of the time values stored in the microprocessor which the user pre-selects by turning the large flush dial 64 on the user interface module 24 to program the duration of the large flush time. The motor 104 runs forward for approximately fifty milliseconds, and rotates the timing gear 96 so that the timing gear 96 is no longer pressing against the ratchet pawl 88.
The ratchet pawl 88 is connected to the ratchet paw spring 90, which is constantly pulling the ratchet pawl 88 in the direction of the outwardly projecting teeth 84 of the spring cover 78. When the timing gear 96 is no longer in contact with the ratchet pawl 88, due to rotation of the motor 104, the ratchet pawl 88 moves into the engaged position and locks the assembly of the spring cover 78 and the pulley 82 into the locked position.
In the locked position, the spring cover 78 can continue to rotate in one direction but not the other. This allows the control module connecting element 28 to continue to be retracted as more slack is created, while preventing the control module connecting element 28 from being pulled back out, which would otherwise allow the weighted element 30 to be lowered and the non-buoyant flush valve 16 to be closed. When the ratchet pawl 88 is engaged with the spring cover 78, the non-buoyant flush valve 16 will be held in the open position, so water will empty from the tank. The non-buoyant flush valve 16 will not close until the ratchet pawl 88 is disengaged from the spring cover 78.
The microprocessor in the user interface module 24 waits for the flush timer to reach the large flush time. When the flush timer reaches the large flush time, the motor 104 runs in reverse for approximately fifty milliseconds, and rotates the timing gear 96 in the opposite direction, such that the timing gear 96 is pressing against the ratchet pawl 88. With the timing gear 96 pressing against the ratchet pawl 88, the ratchet pawl 88 is disengaged from the outwardly projecting teeth 84 of the spring cover 78, and the weighted element 30 is able to be lowered, which closes the non-buoyant flush valve 16 and stops the flush. Because the weighted element 30 counters buoyancy and the force of the spring in the spring cover 78, when the weighted element 30 is released from the locking of the ratchet pawl 88, the weighted element 30 forces the non-buoyant flush valve 16 into the closed position.
Upon the flush timer reaching the end of the large flush time, the flush light emitting diode 68 stops flashing. At the end of the large flush cycle, all timers are reset. The toilet 12 then refills itself as it does normally.
In an embodiment of the invention, wherein the control system 10 includes a single connecting element 148 for the flush actuator and the controlling element, as seen in
In another embodiment of the invention, in
In a further embodiment of the invention, as seen in
Further, in an embodiment of the invention in
In still another embodiment of the invention, as shown in
In a variation of the embodiment, the ratchet pawl is not present, and the rack 162 is very light in weight instead of heavy. In this variation, the gear 168 is driven by a motor. When a user initiates a flush action by pushing the flush handle 140, this causes the chain 148 to rise, which lifts the flush valve 14 and the rack 162. The rack 162 rises and drives the gear 168. The motor connected to the gear 168 is not energized, and does not prevent the rotation of the gear 168. The rotation of the gear 168 is detected by the sensor and the timed flush cycle starts. When the timed flush cycle completes, the motor is energized such that it drives the gear 168 clockwise which forces the rack 162 down, closes the flush valve 14, and ends the flush.
Also, in another embodiment of the invention, in
In a variation of the embodiment, the flush select button 70 to select the flush size is connected to the mechanism housing 156 but is located outside and in front of the toilet tank 12, near the location of the flush handle 140. In another variation of the embodiment, the flush select button 170 is integrated into the flush handle 140, or takes the form of a secondary flush handle.
In a further embodiment of the invention, in an Actuator type flush valve system, as seen in
In a still further embodiment of the invention, in
A Mansfield or Tower type flush valve system is accommodated in another embodiment of the invention, as seen in
In a further embodiment of the invention, in
In such embodiment, if the time threshold determining element is programmed at one minute and a user is detected at the toilet 12 for longer than one minute, the user interface module 24 will run the large flush cycle upon the detection of a flush of the toilet 12. If a user is not detected at the toilet 12 for more than one minute, a small flush cycle will be provided upon the detection of a flush of the toilet 12. The sensing element enables the user to use the flush toilet, without modifying toilet flushing habits, such that the large flush select button 70 need not be pressed prior to flushing the toilet 12 when a large flush is desired. Further, the user need not to be taught how to use the device, since there would be no change in operation of the toilet 12 and no user interface with the device.
In the sensing element embodiment, the sensing element may be located on the user interface module 24 so that it can be pointed in a direct line of sight at a person sitting on the toilet. The user interface module 24 would include a time threshold dial to enable the user to adjust the setting, for example, by turning the time threshold dial clockwise to increase the amount of time that the sensing element 176 requires to detect a user at the toilet 12 before the time threshold is met. Once the time threshold is met by a user being detected at the toilet 12, then the user interface module 24 would provide the next flush as a large flush. The large flush select button 70 can still be used in conjunction with the sensing element 186. If the large flush select button 70 is pressed at any time, for example, a large flush will be provided if the toilet 12 is flushed within ten seconds of the large flush select button 70 being pressed.
While the particular water flow controlling system as shown and disclosed in detail herein is fully capable of obtaining the objects and providing the advantages previously stated, it is to be understood that it is merely illustrative of the presently preferred embodiment of the invention, and that no limitations are intended to the details of construction or design shown herein other than as described in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
342495 | Barker | May 1886 | A |
2056087 | Andrews | Sep 1936 | A |
3108286 | Moore | Oct 1963 | A |
3334359 | Weingartner | Aug 1967 | A |
4014050 | Goldsworthy | Mar 1977 | A |
4058858 | Che-Wei | Nov 1977 | A |
4175296 | Goldman | Nov 1979 | A |
4224703 | Makhobey | Sep 1980 | A |
4225986 | Mauk | Oct 1980 | A |
4225987 | Goldman et al. | Oct 1980 | A |
4391003 | Talerico et al. | Jul 1983 | A |
4392260 | Bensen | Jul 1983 | A |
4428084 | Joun | Jan 1984 | A |
4447919 | Mobilia | May 1984 | A |
4469197 | Ishida | Sep 1984 | A |
4536900 | Hayes | Aug 1985 | A |
4651359 | Battle | Mar 1987 | A |
4881279 | Harney | Nov 1989 | A |
5187818 | Barrett, Sr. | Feb 1993 | A |
5228146 | Martell | Jul 1993 | A |
5319808 | Bishop et al. | Jun 1994 | A |
5432959 | Ellsworth | Jul 1995 | A |
5469585 | Shiue | Nov 1995 | A |
5524297 | Harrison | Jun 1996 | A |
5647067 | Boyle | Jul 1997 | A |
5819329 | Dooney | Oct 1998 | A |
6795982 | Noboru | Sep 2004 | B2 |
7028347 | Sanderson | Apr 2006 | B2 |
7200877 | Peng | Apr 2007 | B2 |
7225478 | Lim | Jun 2007 | B2 |
7293583 | Arigoni | Nov 2007 | B2 |
7415737 | Hung | Aug 2008 | B2 |
20050229298 | Bayer | Oct 2005 | A1 |
20070079432 | Shoikhet et al. | Apr 2007 | A1 |
20080053532 | Miller et al. | Mar 2008 | A1 |
20090126094 | Laube | May 2009 | A1 |
20100050331 | Sim | Mar 2010 | A1 |
20100263116 | Pinizzotto et al. | Oct 2010 | A1 |
Entry |
---|
Brondell PerfectFlush product release, Popular Science, circa May 2009. |
Number | Date | Country | |
---|---|---|---|
20110107506 A1 | May 2011 | US |