This invention relates to a water heater. More particularly, it relates to providing more cathodic protection for the water heater unit which will increase the efficiency and life span of the water heater.
Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.
Domestically, water is traditionally heated in vessels known as water heaters, kettles, cauldrons, pots, or coppers. Rarely, hot water occurs naturally, usually from natural hot springs.
Appliances that provide a continual supply of hot water are called water heaters, hot water heaters, hot water tanks, boilers, heat exchangers, or calorifiers. These names depend on region, and whether they heat potable or non-potable water, are in domestic or industrial use, and their energy source. In domestic installations, potable water heated for uses other than space heating is also called domestic hot water (DHW).
Fossil fuels (natural gas, liquefied petroleum gas, oil), or electricity are commonly used for heating water. Electricity to heat water may come from any other electrical source, such as nuclear power or renewable energy. Alternative energy such as solar energy, heat pumps, hot water heat recycling, and geothermal heating can also heat water, often in combination with backup systems powered by fossil fuels or electricity.
Water heaters have cathodic protection to make the water tank last longer. Cathodic protection is done by inserting a sacrificial metal called an anode that will be consumed by the corrosion that occurs from the minerals in the water that enter the tank. So that the metal of the water heater tank will not be harmed.
The anode protrudes into the tank about ¾ length of the tank, in the center and full length of the anode is a small core which is made of a steel rod which the sacrificial metal is attached to. The anode is inserted into the water heater tank top and has a cap that attaches it to the tank.
Water heaters have a dip tube which is installed in the port that is on top of the water heater tank where the cold water enters. The dip tube is a hollow plastic tube. The purpose of the dip tube is to divert the cold water that enters the tank to the lower part of the tank.
A concerning issue is that the anodes made of a sacrificial that are consumed quickly and have to be replaced every 12 to 18 months.
Accordingly, in light of the above, there is a need for a device that will allow for more anodes to be placed in the water heater tank so that anodes will last for 60 to 72 months or longer before replacement is needed.
The phrases “in one embodiment,” “in various embodiments,” “in some embodiments,” and the like are used repeatedly. Such phrases do not necessarily refer to the same embodiment. The terms “comprising,” “having,” and “including” are synonymous, unless the context dictates otherwise. Such terms do not generally signify a closed list.
“Above,” “adhesive,” “affixing,” “any,” “around,” “both,” “bottom,” “by,” “comprising,” “consistent,” “customized,” “enclosing,” “friction,” “in,” “labeled,” “lower,” “magnetic,” “marked,” “new,” “nominal,” “not,” “of,” “other,” “outside,” “outwardly,” “particular,” “permanently,” “preventing,” “raised,” “respectively,” “reversibly,” “round,” “square,” “substantial,” “supporting,” “surrounded,” “surrounding,” “threaded,” “to,” “top,” “using,” “wherein,” “with,” or other such descriptors herein are used in their normal yes-or-no sense, not as terms of degree, unless context dictates otherwise.
Reference is now made in detail to the description of the embodiments as illustrated in the drawings. While embodiments are described in connection with the drawings and related descriptions, there is no intent to limit the scope to the embodiments disclosed herein. On the contrary, the intent is to cover all alternatives, modifications and equivalents. In alternate embodiments, additional devices, or combinations of illustrated devices, may be added to, or combined, without limiting the scope to the embodiments disclosed herein.
Referring to
The prior-art water heater 100 has a tank 110. The tank 110 holds and heats water that it receives through a cold-water pipe 111. An anode rod 112 is inserted through a port 113 to attract corrosive elements of the water. The anode rod 112 has been made of magnesium material for chlorinated water, water that is not chlorinated uses other materials such as zinc or aluminum. A dip-tube 109 is useful for funneling the received water down to approximately half (½) way down the tank 110 to funnel the cold water closer to the heating device at the bottom of the tank 110. When water is heated it rises, therefore the hot water remains substantially near an upper portion 118 of the tank 110. An outlet 114 allows for the hot water to enter the water line 115 on the top 117 of the tank 110.
To heat the water received, a gas burner or electric element is controlled by a thermostat 120. The gas flue 103 is for the exhaust fumes from the prior-art water heater 100 that uses natural gas or propane. A chimney 104 is substantially coupled to the gas flue 103. The thermostat 120 controls the temperature of the water by selecting a desired temperature. The temperature of the water can be changed at any time by adjusting the thermostat. There also are other methods used to heat the water such as solar energy and geothermal energy, the principles however remain the same.
The prior-art water heater 100 further has a relief valve 101 and relief valve tubing 102. The relief valve 101 is coupled to the tank 110 and is useful for relieving excessive high pressure inside of the tank 110. The relief valve 101 has a metal spring that will expand and open the relief valve to release excessive pressure caused by very hot water or steam that is directed through the relief valve tubing 102 downwards to the floor so that it would prevent harm to anything being close by, such as children.
Water heaters come with one anode rod 112 which is installed through the port 113 on top 117 of the tank 110, if there is no separate port for the port 113, there will be a different type of anode used, this type of anode has a nipple on the top which connects to the hot water line, the bottom portion of the nipple extends into the tank, this part of the nipple has an open por that allows the hot water to flow through it to enter the hot water line 115.
In
Each of the one or more anode rods 210 are attached to an electrically conductive wire 230 at one end, the other end of the electrically conductive wire is attached to the cap 220. The wire 230 is preferably a twenty (20) gauge bus bar, however other types of wires are further contemplated by this application.
Preferably, more than one anode rods 210 are present at any time, thus the water heater unit 110 has an extended life span proportionate to the number of anode rods 210 installed. Preferably there are four (4) anode rods 210, however the number of anode rods 210 may range from one to three or more (1-6).
Referring now to
The water intake assembly 400 has a cold-water piping 410, a dip tube 420 and a coupling-t-device 430. Note a coupling-t-device 430 allows for a three-way connection were as a normal coupling device allows for two connections.
The water piping 410 carries and delivers cold water to the water heater 500 of
The water piping 410 is coupled to the coupling-t-device 430 at a center port 431. The water piping 410 is preferably made of a poly-vinyl chloride (PVC) material, however other materials are hereby contemplated and may be substituted as desired.
The dip tube 420 funnels the cold water received from the water piping 410 at the coupling-t-device 430 allows for three connections attached to the coupling 432 which attaches to near a bottom 513 of the tank 500 (shown in
An output port 433 of the coupling-t-device 430 has a valve 434 that is used to drain the water heater 500 of
Moving now to
The water heater 500 has a tank 510, one or more anode rod assemblies 200, a water intake assembly 400, a relief valve 520, an intake port 511 and a relief valve tubing 530.
The water intake assembly 400 delivering cold water to the water heater 500 for heating purposes. The water intake assembly 400 has a water piping 510 and a dip tube 420. The water intake assembly 400 being configured on an outside 515 of the tank 510.
The one or more anodes rods 200 are coupled to an inside 512 of the tank 510. The one or more anodes rods 200 may be deployed in groupings of two (2) however other arrangements are hereby contemplated such as 3, 4 or more. The one or more anode assemblies 200 are placed in the port 113 where the dip tube (109 of
The dip tube 420 is coupled to the coupling-t-device 430 at the intake port 511 of the tank 510. The water piping 410 is preferably made of a ploy-vinyl chloride (PVC) material however other materials are hereby contemplated as determined by a person of skill in the art. The dip tube 420 is preferably made of a ploy-vinyl chloride (PVC) material however other materials are hereby contemplated as determined by a person of skill in the art.
In the numbered clauses below, specific combinations of aspects and embodiments are articulated in a shorthand form such that (1) according to respective embodiments, for each instance in which a “component” or other such identifiers appear to be introduced (with “a” or “an,” e.g.) more than once in a given chain of clauses, such designations may either identify the same entity or distinct entities; and (2) what might be called “dependent” clauses below may or may not incorporate, in respective embodiments, the features of “independent” clauses to which they refer or other features described above.
Those skilled in the art will appreciate that the foregoing specific exemplary processes and/or devices and/or technologies are representative of more general processes and/or devices and/or technologies taught elsewhere herein, such as in the claims filed herewith and/or elsewhere in the present application.
The features described with respect to one embodiment may be applied to other embodiments or combined with or interchanged with the features of other embodiments, as appropriate, without departing from the scope of the present invention.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.