This disclosure relates generally to a water heating system and, more specifically, to a water heating system that achieves high thermal output yet occupies a small footprint and operates over a broad modulation range.
Hydronic boilers are used in generating heat for residential and industrial purposes. The hydronic boiler operates by heating water to a preset temperature and circulating the water throughout the building, typically by way of radiators, baseboard heaters, or through the floors. Typically, the water is heated by a natural gas burner. The water is in an enclosed system and circulated throughout the structure by a pump.
Hydronic boilers typically include a pressure vessel with internal heat exchange tubes in contact with flowing water. In one type of water heating apparatus, known as a fire tube boiler, hot combustion gases flow internally through the heat exchange tubes and the water to be heated flows around the tubes, picking up the heat. In another type of conventional water heating apparatus, water rapidly flows within the heat exchange tubes and the heat source is exposed to the outside of the tubes.
The water volume of a hydronic boiler pressure vessel is a function of the building's thermal demand and the output capacity of the heat exchange system. The operating water pressure in a hydronic boiler can be as high as 80 psi or even 160 psi. Therefore, in large-scale or industrial hydronic boilers, the pressure vessel may be quite large, over four feet in diameter.
In accordance with one aspect of the disclosure, a water heating apparatus includes a fluid inlet conduit configured to split into a plurality of supply legs, and a plurality of heat exchangers. Each heat exchanger includes an outer housing, an inlet connected to a respective supply leg of the fluid inlet conduit for receiving an inlet flow of liquid into the outer housing, an outlet for allowing an outlet flow of liquid to leave the outer housing, and a heat exchange element positioned within the outer housing and configured to heat a flow of liquid passing through the outer housing from the inlet to the outlet. The water heating apparatus further includes a burner assembly. The burner assembly includes a combustion chamber housing and a burner positioned internally within the combustion chamber housing. The burner assembly is coupled to the plurality of heat exchangers for supplying heat to the flow of liquid. The plurality of heat exchangers are configured for parallel operation.
The features described herein can be better understood with reference to the drawings described below. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
Referring to
Briefly, operation of the water heating apparatus 10 will next be described. Details of particular elements will be provided below. The heat exchangers 16a, 16b provide for heat transfer between a first fluid (preferably a hot gas) and a second fluid (preferably water). Air and fuel are pre-mixed in the air fuel delivery system 12 and delivered to the burner assembly 14 by blower 28. The burner assembly 14 includes an outer containment vessel 30, a combustion chamber housing 32 disposed inside the outer containment vessel, and a burner 34 positioned internally within combustion chamber housing 32. The outer containment vessel 30 may be formed of carbon steel, and the combustion chamber housing 32 may be formed of stainless steel. The combustible mixture is ignited in the burner 34 by igniter 36 (not shown). Mesh 38 surrounds the burner 34 to provide a flame front and aide in stable combustion over a wide range of operating parameters. The hot combustion exhaust gases collect in area 40 defined by the combustion chamber housing 32 and the mesh 38, and are directed to the heat exchanger 16a, 16b via expansion joints 42a, 42b. Expansion joints 42 couple combustion chamber housing 32 to heat exchanger 16, and act to absorb stresses due to thermal expansion and contraction of the burner assembly 14 relative to the heat exchangers 16a, 16b. In one example, the expansion joint 42 defines an opening to the heat exchanger 16 that is approximately 12 inches in diameter.
In the illustrated embodiment, heat exchangers 16a, 16b are substantially identical, and the description of one heat exchanger will serve to describe both. It is further noted that for reasons to be fully explained herein below, the water heating apparatus 10 of the present invention requires at least two heat exchangers, but can include three, four, or more heat exchangers depending upon the particular requirements of the installation.
Heat exchanger 16 may be constructed from an upright, cylindrical outer housing 44 and two tubesheets, an upper tubesheet 46 at the combustion gas inlet/water flow exit, and a lower tubesheet 48 (obscured from view) at the combustion gas exit/water flow inlet. The upper tubesheet 46 and the lower tubesheet 48 are welded at their periphery to the respective portion of the outer housing 44. The heat exchanger 16 further includes at least one, but preferably a plurality, of heat exchange tubes 50. In one embodiment, the tubesheets 46, 48 are flat disks having a plurality of holes in which the heat exchange tubes 50 fit. The heat exchange tubes 50 are welded between the two tubesheets 46, 48. In one example, the lower tubesheet 48 contains a circular pattern of holes along its outer edge through which inlet water may flow.
The heat exchanger 16 in the illustrated embodiment is of the type known as a fire tube unit. That is, the hot combustion gases flow through the inside of the heat exchange tubes 50, while the water to be heated flows in heat exchange relationship around the exterior of the heat exchange tubes 50. In this manner, the hot gas flows in a downward direction through the heat exchange tubes 50, and the water flows upward such that it increases in temperature establishing a temperature gradient in the direction of flow of water. The combustion gases, having given up a large portion of their thermal energy, are directed out the bottom of each heat exchangers 16a, 16b to a central plenum or combustion exhaust manifold 18. The combustion exhaust manifold 18 is coupled to an exhaust pipe (not shown) that directs the gases to the outside environment of the facility.
Accordingly, the disclosed configuration allows water to travel in physical isolation from, but in heat exchange relation with, the hot gases passing through the combustion chamber and the heat exchange tubes 50. As the water flows upwards in true counterflow to the hot gases, heat is transferred to the water, causing a temperature gradient in the direction of the water flow. Conversely, as the gases flow downwards, they are cooled in traversing the heat exchange tubes 50.
The true counterflow movement of the water and gases provides for excellent efficiency of operation. As the gases are cooled below their dew point, they condense, providing additional heat to the flow of water by way of energy release of condensation. Efficiency levels greater than 90 percent, not possible without the condensing operation, are thus achieved. Moreover, the condensing operation is advantageous because the movement of condensate droplets or film through the heat exchange tubes 50 helps to sweep out any carbon particles that may accumulate in the tubes, thereby maintaining optimal heat transfer.
The modulation of the water heating system over a broad range is also advantageous to the efficiency of its operation. Since the water heating system modulates over a broad range, the onset of condensation occurs at varying positions along the length of the heat exchange tubes 50. Thus, any corrosion that occurs is distributed over the heat exchange tubes instead of accumulating in one area.
In one embodiment of the present invention, the heat exchange tubes 50 are straight tubes, 44 inches long, and formed from ⅝ inch diameter stainless steel tube. Each heat exchanger 16a, 16b includes 322 such tubes. The heat exchange tubes 50 may include spiral grooves or the like on the tube exterior surface. The grooves increase the velocity and turbulence of the water flowing over the tubes 50, which improves the heat transfer from the hot gases to the water. The spiral groove also reduces the stresses caused by tube thermal expansion and contraction. Although the tubes are constrained at each end (e.g., brazed or welded at the upper tubesheet 46 and lower tubesheet 48), the spiral geometry allows significant expansion and contraction without overstressing the braze joints. The spiral angle, depth, and pitch of the grooves provide far superior heat exchange characteristics as compared to straight-wall tube. For example, the heat exchange tubes 50 disclosed herein provide 4.5 times the heat transfer capability over conventional tubes.
The heated flow of water exiting the upper portion of the heat exchanger 16 enters a water jacket 52 defined by the area between the outer containment vessel 30 and the combustion chamber housing 32. In one embodiment of the invention, a baffle 54 (
The air fuel delivery system 12 includes an air filter 56 to remove airborne particulates from the air intake stream. The air filter 56 couples to an intake conduit 58 that connects to blower 28. The intake air stream is mixed with fuel in an air fuel valve assembly 60. A gas train 62 connects to the air fuel valve assembly 60 to provide gaseous fuel to the valve. The fuel can include a plurality of suitable gases, for example compressed natural gas (CNG). The chemical composition of the CNG can vary and many suitable compositions are contemplated herein. In one embodiment, the CNG comprises methane, ethane, propane, butane, pentane, nitrogen (N2), and carbon dioxide (CO2).
Referring to
The gas flow plate 64 is fixedly attached to the intake conduit 58 by mounting holes 72. The gas flow plate 64 includes area openings 74 for metering fuel flow. The shutter 66 is positioned such that rotation thereof results in blockage of the area openings 74, thereby metering the flow. In one example, the valve shaft rotation provides for a change in area openings 74 that is linearly responsive to a control signal from the temperature controller 26. Preferably, the flows of air and gas to the burner assembly 14 are at a substantially constant ratio producing an air/fuel mixture in the burner with excess oxygen of 5 percent. This ratio has been found to produce the best mixture for combustion. In one embodiment, the gas flow plate 64 is formed of aluminum and the external surfaces hard anodized to improve wear resistance.
Several features have been incorporated into the design of the air fuel valve assembly 60 to achieve the large turndown ratio. In one example, one face of the shutter 66 includes a cylindrical protrusion 76 for registration with a corresponding cylindrical recess 78 in the gas flow plate 64. The relative dimensions can be machined with great accuracy, thereby maintaining excellent concentricity between the two parts. In another example, the gas flow plate 64 includes a registration slot 80 extending radially from one side of the central axis. The registration slot 80 corresponds to a like slot 82 in the shutter 66. In one example, the slots 80, 82 can be offset from the centerline. A registration pin (not shown) can engage both the registration slot 80 in the gas flow plate 64 and the corresponding slot 82 in the shutter 66. The inventors have determined that, unlike prior art designs that include a pair of opposing registration slots extending radially from the central axis, a single radially slot significantly decreases the potential for relative movement between the gas flow plate 64 and the shutter 66. In this manner, the shutter 66 can be controlled with higher precision.
In another example, the gas flow plate 64 may include an auxiliary port 84 for turndown adjustment control. Although the features described above contribute to a very high turndown ratio, i.e., up to 20:1, there may be unit-to-unit variation in the water heating apparatus 10. The turndown adjustment control allows a small amount of fuel to be metered through the auxiliary port 84 in the gas flow plate 64 regardless of the shutter 66 position, so the performance characteristics of all water heating units will be substantially the same.
Referring now to
Referring now to
Referring now to
Another improvement to the water heating apparatus 10 stemmed from the realization that the pattern of apertures 96 in the burner 34 can greatly affect acoustic resonances and therefore the decibel level of the water heating apparatus 10 while in operation. Prior art attempts at breaking up acoustic resonances in the burner section include drilling holes in the inlet, adding a center tube in the burner, or adding a divider in the center of the burner. Although these attempts may be useful in some applications, they add complexity and cost.
In one embodiment of the present invention, the pattern of apertures 96 comprises cylindrical rows of equally spaced holes. The holes can be drilled at an angle to improve combustion performance. The pattern of equally spaced holes 96 in each row can be angularly offset (or “clocked”) from the preceding row and the following row. For example, referring to
The inventor's testing reports that incorporation of an interrupted hole pattern or dead row 98 in a water heating apparatus 10 of the current invention resulted in a marked decrease in the acoustic signature. Such improvements in noise abatement are highly desirable and a strong selling point for the boiler.
An oxygen sensor 100, such as that disclosed in U.S. patent application Ser. No. 13/409,935, assigned to the assignee of the present invention and incorporated by reference herein in its entirety, can be used to detect an amount of oxygen in the products of combustion. In one embodiment, shown in
In one embodiment, the water heating apparatus 10 includes a flow tube 106 that draws combustion gases into the cavity 102 of the refractory liner 104. The flow tube 106 includes a first end 108 positioned in close proximity to the tip of the oxygen sensor 100, and an opposing second end 110 positioned in a location of lower pressure than the combustion chamber. In one example, the second end 110 of the flow tube 106 is disposed in the combustion exhaust manifold 18, which is at a pressure approximately 6 inches water column (IWC) lower than the combustion chamber where the cavity 102 is located. A small, relatively constant stream of combustion gas flows through the flow tube 106 as the gases in the higher pressure plenum seek the lower pressure plenum. The flow into the tube 106 is illustrated by the arrows in
Although obscured by the outer containment vessel 30 and combustion chamber housing 32, the burner assembly 14 further includes a cylindrical burner sleeve surrounding the refractory liner 104 on the inlet side of the burner. The burner sleeve, which may be formed of stainless steel, protects the abradable refractory material during installation to and removal from burner assembly 14.
The water heating apparatus 10 of the present invention includes a unique water piping arrangement to supply water to the plurality of heat exchangers at substantially equal flow and pressure, without use of complicated valves, controllers, or specialized orifice plates. The piping arrangement allows the plurality of heat exchangers to operate in parallel, as contrasted to prior art water heating systems that operated in series. Turning now to
Two smaller-diameter piping sections symmetrically extend from the base of the second pipe section 116 and form longitudinal runners to the inlet of each heat exchanger. In the illustrated embodiment, a first supply leg 118 for connection to heat exchanger 16a extends laterally away from the second pipe section 116 to the inside wall of the enclosure 24, bends 90 degrees downward to the floor of the enclosure 24, then bends 90 degrees in a longitudinal direction to extend or run partially underneath the heat exchangers, which are somewhat elevated. A first tee 120 connected to the first supply leg 118 is disposed vertically between the heat exchangers 16a, 16b and connects to a first inlet elbow 122. The first inlet elbow 122 bends 90 degrees to a horizontal orientation, then connects to the inlet port 124a of heat exchanger 16a. The first inlet elbow 122 and inlet port 124a are oriented approximately 40 degrees from the longitudinal axis, as illustrated in
A second supply leg 126 for connection to heat exchanger 16b is symmetric to the first supply leg 118. That is, the second supply leg 126 extends laterally away from the second pipe section 116 (in an opposing direction to the first supply leg 118) to the opposite inside wall of the enclosure 24, bends 90 degrees downward to the floor of the enclosure 24, then bends 90 degrees in a longitudinal direction to extend or run partially underneath the heat exchangers. A second tee 128 (in opposing relation to the first tee 120) connected to the second supply leg 126 is disposed vertically between the heat exchangers 16a, 16b and connects to a second inlet elbow 130. The second inlet elbow 130 bends 90 degrees to a horizontal orientation, then connects to the inlet port 124b of heat exchanger 16b. The second inlet elbow 130 and inlet port 124b are oriented approximately 40 degrees from the longitudinal axis, as illustrated in
One benefit of the disclosed water piping arrangement is that it provides equal flow and pressure in parallel to each heat exchanger, in a completely passive manner. Importantly, the equal flow conditions exist over the entire operating of the water heating apparatus 10, without the need for a variable orifice or restriction. Equal pressure drops in the first and second supply legs 118, 126 are achieved by designing the legs with equal lengths and equal bends. Furthermore, because the first and second supply legs 118, 126 are incorporated into the base of the enclosure 24 and partially underneath the heat exchangers 16a, 16b, a more compact form factor can be attained.
Operating multiple heat exchangers in parallel provides the additional benefit of utilizing condensing operation for each of the individual heat exchangers, thereby achieving very high efficiency levels (i.e., greater than 90 percent). In contrast, prior art multiple heat exchangers operating in series seldom, if ever, achieve condensing operation at the same time.
As shown in
The physical layout of the components described herein provides for a compact form factor for the water heater system. In one embodiment of the present invention, a hydronic boiler system produces 6 million BTU/hr. heat exchange capacity while the enclosure 24 occupies a form factor of less than 36 inches wide, less than 82 inches high, and approximately 87 inches in depth. In one example, the form factor is 34 inches wide, 79 inches high, and 87 inches in depth. Thus, the disclosed water heating apparatus 10 will pass through a standard-sized doorway to a building's mechanical room.
In contrast, calculations show that a 6 million BTU/hr. water heating system comprising a single heat exchanger would need to be approximately 38 inches in diameter, which would not fit through a standard doorway of a mechanical room. The larger diameter heat exchanger would thus require a much larger tubesheet, which would not dissipate heat as well. Should the single heat exchanger be formed as an oval to maintain a smaller width, calculations show the flat side, not being a good pressure vessel, would need to be over 1 inch thick, which adds considerable cost and weight to the installation.
While the present invention has been described with reference to a number of specific embodiments, it will be understood that the true spirit and scope of the invention should be determined only with respect to claims that can be supported by the present specification. Further, while in numerous cases herein wherein systems and apparatuses and methods are described as having a certain number of elements it will be understood that such systems, apparatuses and methods can be practiced with fewer than the mentioned certain number of elements. Also, while a number of particular embodiments have been described, it will be understood that features and aspects that have been described with reference to each particular embodiment can be used with each remaining particularly described embodiment.
Reference is made to and this application claims priority from and the benefit of U.S. Provisional Application Ser. No. 61/646,346, filed 13 May 2013, entitled “WATER HEATING APPARATUS WITH PARALLEL HEAT EXCHANGERS”, which application is incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
61646346 | May 2012 | US |