1. Field of the Invention
The present invention generally relates to water collection systems for ballast water, cooling water, and auxiliary service water on naval vessels. More particularly, this invention relates to a system and method for filtering water before reaching the vessel ballast, cooling, and auxiliary systems.
2. Description of the Related Art
Naval vessels, such as cargo ships and cruise ships, have been used for years to transport cargo and/or people from port to port all over the world. The ports are typically located onshore near a body of water, and the ships are typically moored nearby to facilitate loading and unloading of the cargo or people. To provide for the operation of the vessel, there are provisions for the vessel to bring aboard surrounding water for the purposes of ballast, cooling, and other miscellaneous auxiliary services. Generally, surrounding water brought aboard a vessel falls into one of two categories, one being ballast water and the other being cooling or auxiliary service water.
Typically, naval vessels are configured to displace a specific amount of water in order to maintain stability and/or provide maneuverability in the water, among other factors, and ballast water may facilitate this displacement. Ballast water may be water which is gathered and retained aboard until discharged at, or enroute to, a different location or port. To facilitate displacement of the vessel, the vessel typically includes one or more integral ballast tanks configured to receive and store the water, and to expel the water when desired. The water used to fill the ballast tanks is typically gathered from the water around the vessel, and the ballast tanks may be filled or purged by an onboard system of pumps that are in communication with the ballast tanks on the vessel.
To provide for the operation of machinery and equipment on board the naval vessel, water is needed to perform any variety of duties. Cooling or auxiliary service water may be water brought aboard for the purposes of cooling equipment or machinery, or performing some other required duty aboard the vessel, and the water is generally discharged back into the surrounding water on completion of the duty. Typically, vessels will be provided propulsive and/or electrical power through diesel, steam, or gas turbine prime movers. In some cases, excess heat required to be removed from this equipment in the course of its operation is done through the transfer of heat to water that is taken from the surrounding area, put into the required service aboard the vessel, and thereupon returned by discharging the water back into the surrounding environment. In other cases, the water may be needed aboard the vessel to perform duties unrelated to power development. These activities could include providing sealing water for rotating equipment or other equipment, providing water for firefighting, supply water for reverse osmosis filtration or other types of distillation plants, and providing for sanitary water requirements, among other uses.
The water supplied for the purposes of use in ballast tanks, cooling water, and/or auxiliary services is typically gathered by inlet conduits or intakes, sometimes referred to as sea chest openings, that are integral to the vessel hull and in communication with the ballast tanks or other systems for which the water is required. While these inlet conduits may include a grating or mesh to filter large debris during operation, the gratings typically do not exclude smaller debris and/or marine life, such as aquatic species of plants and animals. The introduction of certain marine life into the vessel's water intake system, for example fish species inadvertently pulled into the inlet conduit, may injure or kill the fish irrespective of the duty the water will perform aboard the vessel. Moreover, in the case of water brought aboard for ballast service, any marine biota surviving transfer into a ballast tank will be locationally displaced. This injury, unintentional eradication, or locational displacement of the fish may negatively impact the ecological balance in the body of water in which the vessel is docked, and the possibility of negative environmental impact to fish may limit the docking or landing possibilities of the vessel. For example, estuaries, preserves, and other ecologically sensitive or protected marine areas may not be available as potential landing sites for the vessel. This limited docking potential may, in turn, prevent or minimize commercial ventures in certain areas, or may limit the availability of certain products in an area where the products may be used, thus requiring the products to be off-loaded at distant ports and transported to the area by alternate means.
As interest in ecologically sensitive areas grows, companies and other commercial interests desiring to create landing sites have become more cognizant of the fragile ecological balances in these areas. Some of these companies have made commitments to operating in these areas in a manner that not only maintains the ecological balance, but monitors and reacts to ecological shifts in these areas in an effort to enhance the ecosystem. Challenges exist for these companies as the typical vessel to be moored at the landing site may be an older vessel and/or is not equipped to limit impact to the area due to the age of the vessel, or the vessel is mechanically deficient of some apparatus that may limit environmental impact. For example, the companies that operate the landing sites often do not have a say in the age or manufacture of the vessel that is used to transport the cargo to the landing site. Thus, these companies have been challenged to make these vessels more ecologically friendly without major redesigns in the vessel itself.
Therefore, there is a need in the industry for a water intake filtering system that minimizes or eliminates intake of, and injury to, marine life while maintaining an acceptable flow of water to support vessel requirements.
The invention generally provides methods and apparatus for marine vessel water intake systems. The apparatus includes a filtering device adapted to couple to the marine vessel over a water intake port in the hull of the vessel. The filtering device lowers the flow velocity of the water on the incoming surface of the filter while maintaining a suitable flow to the intake port of the vessel. The filtering device prevents marine species of a certain size from becoming entrained in the water flow and entering the intake port, and provides that marine species that may be in the area of the intake port do not become impinged on the filtering device as a result of intake water flow velocity.
In one embodiment, a filter is described. The filter includes a frame adapted to couple to a hull of a marine vessel adjacent an opening in the hull by a plurality of temporary connectors spaced around a perimeter of the frame, and a covering coupled between opposing sides of the frame to define a surface area that is at least two times greater than a surface area of the opening in the hull.
In another embodiment, a filter configured to removably attach to a hull of a vessel adjacent an opening in the hull, the opening having a first surface area configured to receive a volume of water at first flow velocity is described. The filter includes a frame and a covering attached to the frame having a second surface area that is greater than the first surface area and defining an interstitial space between the hull and an interior surface of the covering, and a plurality of temporary connectors spaced along the perimeter of the frame, wherein the covering maintains the volume of water at a second flow velocity that is less than the first flow velocity.
In another embodiment, a method for filtering marine species from water surrounding a marine vessel is described. The method includes coupling a removable filter to the marine vessel over an opening in the hull, moving water through an area exterior to an outer surface of the removable filter at a first velocity, and moving the filtered water through the opening in the hull at a second velocity that is less than the first velocity.
So that the manner in which the above-recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is also contemplated that elements and features of one embodiment may be beneficially incorporated on other embodiments without further recitation.
The present invention generally relates to water collection systems for filling intake water on naval vessels and may be exemplarily described for use on cargo ships, but embodiments described herein may be used on any vessel that requires intake water to perform required service or fulfill a need upon the vessel. Examples include cruise ships, submarines, personal watercraft, and any other marine vessel configured to gather, store, and expel ballast water, and/or gather, use, and discharge cooling and/or auxiliary service water. Although the invention is exemplarily described with respect to ballast, cooling, and auxiliary water systems aboard these vessels, embodiments described herein may also be adapted to filter incoming water used in other water intake systems aboard the vessels as well.
The docking facility 120 provides a stable platform for loading and unloading cargo, such as LNG in this example. Conduits, such as pipes and hoses, to facilitate loading and unloading of the LNG to and from the processing facility 115 and the vessel 105 may be coupled to the docking facility 120 or in the body of water 110 between the vessel 105 and the processing facility 115. Other supplies, such as fuel, food, and other items used on the vessel 105, may be transferred to or from the vessel 105 by using the docking facility 120.
As mentioned above, the openings 230 may include a grating or mesh to minimize the introduction of debris into the openings 230, but typically do not control the introduction of marine life, particularly fish species, into the water intake systems of the vessel. In this embodiment, each of the openings 230 include a filter 225 attached to the hull 205 and positioned over the openings 230 to minimize or eliminate the introduction of marine life into the openings 230. The filter 225 is adapted to be at least partially flexible to conform to the shape of the outer surface of the hull 205 while maintaining sufficient rigidity and mechanical strength to act as a filter, and may be removably coupled to the hull 205 while the ship is docked by the use of coupling devices (described below). Each filter 225 may be positioned and attached over the openings 230 by a dockside or vessel crane, or divers may be employed to position and attach the filters 225. Before the vessel leaves the port, each filter 225 may be removed by a crane or divers.
The filter 225 as described herein is adapted to decrease incoming water flow velocity at or near the outer surface of the filter 225 while maintaining volumetric flow to the opening 230. In one embodiment, the surface area of at least the outer surface of the filter 225 is greater than the surface area of the opening 230, thereby minimizing the flow velocity at the outer surface of the filter while maintaining a suitable volumetric flow at the opening 230. In one application, the surface area of the filter 225 is at least two times greater than the surface area of the opening 230, while in other applications, the surface area of the filter 225 is three, four, five, or six times greater than the surface area of the opening 230.
In one embodiment, the covering 320 is adapted to flex to accommodate the curvature of the hull 205 while maintaining structural rigidity of the covering 320. For example, the frame 305 is adapted to flex or conform to the shape of the hull 205, and is made of conformal materials, such as rubber, plastics, elastomers and the like. The frame 305 may also be made of metallic materials, such as stainless steel, aluminum, brass and the like. The metallic materials may include a spring-like property or be made of sheet metal that may easily bend while retaining sufficient mechanical integrity to prevent permanent bends or creases in the frame, or may include a shape memory alloy (SMA). The frame 305 may also include flexible portions 330A and 330B to facilitate conformity of the frame 305 to the hull 205 by enhancing structural strength of at least the covering 320, while facilitating flexibility of the frame 305. The flexible portions 330A and 330B may be portions of the frame 305 material having a thinner, more flexible cross-section, or the flexible portions may be fasteners, such as hinges, springs, coupling devices, and the like, that are coupled between sections of the frame 305. In one application, the flexible portions 330A, 330B may be a magnetic material to facilitate coupling of the frame 305 to the hull 205, and in one embodiment, the magnetic material may be flexible or include a fastener coupled between the magnetic material and sections of the frame 305.
The covering 320 is generally spaced apart from the hull 205 to define an intermediate area, shown as an interstitial area 380 in
In the example shown in
To facilitate coupling of the filter 225 to the hull 205, the frame includes a plurality of temporary connectors 325, which may be magnetic members, suction devices, vacuum devices, and combinations thereof. In one application, at least a portion of the plurality of temporary connectors 325 are mechanically actuatable magnets that may be actuated manually or remotely by a switch or lever. In another application, electrically actuated magnets may be used, and the magnets may be actuated by a remote actuation system or manually by a diver. In another application where the condition of the hull allows, at least a portion of the temporary connectors 325 are suction or vacuum devices that may be configured to hold and release by a mechanical lever, or the vacuum device may include a hose coupled to a source of negative pressure to maintain suction and coupling of the filter 225 to the hull 205.
Each end cap 410A, 410B includes a housing 440 that may include a temporary connector, such as a magnet, a suction device, and the like, as described in reference to
In one embodiment, each filter section 420A-420D may include a structural member 450 that is adapted to enhance the mechanical strength and rigidity of the covering 320 and/or the filter 225. For example, each filter section 420A-420D may include one or more structural members 450 that serve as an attachment point for the covering 320 while also adding mechanical strength to the filter section. In one application, filter sections 420A and 420D are coupled on one end to respective end caps 410A, 410B by any fastening device or method, such as welding, adhesives, clamps, screws, bolts, rivets, snaps, a hook and loop type fastener, or any other suitable fastening device or method. In one specific embodiment, each end cap 410A, 410B and/or section 420A-420D includes a recess 412 formed therein that is adapted to receive a portion of a respective filter section. As an example, an extended member 460 on filter sections 420A, 420D, such as a rod or bar, may extend out of the respective section to be received in the recess 412 as shown in
In this embodiment, the width “W” may be any desired width that may be determined before manufacture, and the length “L” may be configurable or modular. For example, each filter section 420A-420D may be added as needed in order to increase the length L of the filter 225, which increases the surface area of the filter 225. Additional filter sections 420B, 420C may be coupled to the respective filter sections 420A, 420D at the interface 430 between the respective sections to adjust the length L. Each interface 430 may be a plurality of fasteners, such as bolts or screws, clamps, and the like, and is adapted to attach and detach easily. In one embodiment, one filter section may include an extended member 460, such as a bar or rod, that is adapted to be received by an adjacent filter section, which may be fastened together as described above. In one embodiment, the interface 430 comprises a hook and loop fastener made of a corrosion resistant material, such as stainless steel. The end caps 410A, 410B may be made of SMA's, elastomers or polymers, such as plastics, or corrosion resistant metals that may include a spring-like property to facilitate slight bends to conform to the shape of the hull (not shown in this view). Likewise, each interface 430 is adapted to bend slightly to facilitate conformation of the filter 225 to the hull 205.
In one embodiment, each end cap 510A, 510B may include a center section 535 having at least one housing 540 for a temporary connector as described above. Each end cap 510A, 510B also includes one or more flexible interfaces 514, as well as flexible interfaces 514 between end caps and filter sections 520A, 520B. The flexible interfaces 514 may include flexible materials or devices allowing flexibility. Examples include hinges, a flexible material, such as rubber, SMA's, hook and loop connectors, as well as other devices and materials that allow at least some flexibility in the filter 225.
A conformal material 505 is also shown along a joining surface of the filter 225, such as the surface of the filter 225 that faces the hull (not shown) and/or the surface(s) of each end cap 510A, 510B, and/or filter sections 520A, 520B. The conformal material 505 is configured to provide a flexible, conformal seal between the hull (not shown) and the filter 225 and facilitates sealing of irregularities in the hull, such as low spots and high spots, rough surfaces, fouling, among other surface irregularities. The conformal material 505 includes flexible materials, such as rubber, foams, silicone, and other flexible materials and may be coupled to the joining surface of the filter 225 by fasteners and/or adhesives. In one embodiment, the conformal material 505 is along the length L or the width W, but in other applications, the conformal material 505 is coupled to the entire joining surface of each end cap 510A, 510B, and filter sections 520A, 520B. Additionally, conformal material 505 may be disposed at each flexible interface 514 to provide a substantial seal between the hull (not shown) and the filter 225.
The flow diverter 610 may be a rectangular or circular plate or corrugated member made of corrosion resistant materials, such as polymers, elastomers, metals, and the like. The flow diverter 610 may be a solid plate, a perforated plate, a mesh material, a plurality of angled plates, or any combination thereof. The flow diverter 610 may be integral to the covering 320 of the filter 225, for example coupled to the inner surface or outer surface of the covering, or may be used to replace a portion of the covering 320 of the filter 225. In one embodiment, the flow diverter 610 may include a plurality of orifices or slots (not shown) that may be angled to divert the flow path of the water as it passes therethrough. While the opening 230 is shown as rectangular, the opening may be any shape, for example round, oval, or square. Also, the flow diverter 610 is shown as rectangular but may comprise any shape regardless of the shape of the opening 230. For example, the opening 230 may be round or circular and the flow diverter 610 may comprise a rectangular, a hexagonal shape, a triangular shape, or any other suitable shape.
In this embodiment, the filter 225 also includes a plurality of lighting devices 660 coupled to the frame of the filter 225, and are configured to provide optical energy in a manner that repels at least a portion of any marine life adjacent the face of the filter 225. In one embodiment, the plurality of lighting devices 660 are positioned and actuated to repel at least a portion of marine life from the vicinity of the filter 225. In one embodiment, each of the plurality of lighting devices 660 may be a strobe light configured to flash intermittently or synchronously. The lighting devices 660 may be powered by a battery (not shown) coupled to, or integral to, the frame of the filter 225. In some applications, the lighting devices 660 may be powered by a remote power source using cords or wires in communication with the lighting devices. The plurality of lighting devices 660 are directed outwardly (away from the hull 205) and are adapted to provide an irradiance of about 90 W/meter2 at a distance of about 1.5 meters from the outer surface of the filter 225, further described in reference to
In this embodiment, the filter 225 includes the lighting devices 660 as shown in
The filters 225 described herein are adapted to facilitate suitable flow of water to the opening in the hull of a vessel while decreasing the velocity of the water flow across the filter. For example, the filters are configured to increase the flow surface area by at least about 5 times, and decrease the velocity of the flow by about 5 times at the point of filtration. In one embodiment, the filters 225 described herein facilitate an approach velocity, which may be defined as the incoming water velocity at a point perpendicular to and approximately three inches in front of the outer surface of the covering 320 (i.e. the upstream side or area outside of or opposite the intermediate area), that is between about 0.1 feet per second (fps) and about 1 fps. In one specific application, the filters may be configured to have an approach velocity of about 0.2 fps or less. The increased surface area of the filters allows a suitable and sufficient volume of water to the opening and the ballast while minimizing the flow velocity and/or equalizing the velocity gradient across the face of the filter.
The configuration of the covering 320 as described herein prevents marine life of a certain size from entering the opening 230, and the decreased approach velocity facilitated by the filters prevents or minimizes impact of the marine life against the outer surface of the covering. This, in turn, minimizes or eliminates introduction of the marine life into the opening in the hull while also minimizing or eliminating the possibility of injury or locational displacement to the marine life. In the event that debris and marine life may clog the openings in the covering, the filters may be cleaned periodically by personnel, either dockside by removing the filters from the hull, or in the water while the filters are coupled to the hull. In some applications, water flow may be applied from the opening 230, or through external means to the interior of the filter 225 and/or covering 320, periodically, such that the flow is reversed through the filter and/or covering in order to remove the debris and/or marine life from the filter and/or covering, as needed. Once the covering has been cleared of debris and marine life, the pumping of incoming water may be resumed and/or maximized.
The apparatus and method described herein is adapted to protect certain fish species and other marine life in areas that may be protected, and also maintains the status quo in areas that are not currently protected by minimizing or preventing accidental injury, eradication, and dislocation of these species. This provides less of an environmental impact in an area that may be protected and may open up the possibilities for landing sites for commercial ventures. Also, the apparatus and method provides a smaller ecological footprint in areas where the vessel is docked or moored, as the marine population will not be significantly reduced or affected in the area around the docking facility.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. Provisional Patent Application Ser. No. 60/893,581, filed Mar. 7, 2007, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60893581 | Mar 2007 | US |