The present invention relates to the field of building construction. More particularly, the present invention provides a method and apparatus that prevents water intrusion into the walls of the building around a window, door, or other framed object.
A typical window 100 of the prior art is shown in
Typically, a window is installed into a rough opening 200 in a house or building, as shown in
To hold the window unit 100 in place, the unit 100 is generally constructed with a nailing or installation flange 170 near the exterior edge on each of the four faces 160 of the window frame 120.
Because the opening 200 is deliberately sized larger than the window 100, a space 310 is created between the opening 200 and the window. Modern construction techniques involve creating a vapor barrier between warm moist air inside a house and the outside, cooler air. To complete the vapor barrier, it is necessary to extend the vapor barrier from the rough opening 200 of the house framing to the window 100 itself. To accomplish this, foam 320 is inserted into space 310 around all four faces 160 of window 100. This foam 320 also serves to insulate this gap 310. Most window manufacturers carefully advise the window installers to take steps to prevent the expanding foam 320 from warping the window frame 120. In most cases, installers are instructed to use low expanding foam 320. In addition, installers are instructed to begin inserting the foam 320 at the nailing flange 170, but to avoid filling the entire space 310 all the way to the interior 240 of the rough opening 200 and window frame 120. This should allow the expansion of the foam 320 within space 310 without warping the window frame 120.
To prevent water leakage under the nailing flange 170, installers will generally place a sealant between the flange 170 and the exterior surface 250 of the rough opening 200. Sill flashing is used on the sill 230 to provide a moisture barrier to prevent water that enters the window cavity 202 after installation of the window 100 from entering the wall under the sill 230. Moisture in the window opening 202 will ideally pool on the sill flashing, where it will generally drain down the non-wood side of the exterior building paper. Any moisture that does not drain off the sill will remain on the sill flashing until it evaporates. Because of this, it is generally encouraged that sealant not be used on the bottom or sill nailing flange 170, in order to allow for drainage and evaporation from outside.
Unfortunately, this prior art technique of window construction and installation has caused various moisture and mold problems in today's buildings. What is needed is an improved construction and installation method for windows the does not cause these problems.
The present invention prevents moisture that enters the window opening from entering the interior of the building by creating a channel behind the nailing flange of the window. Prior art windows and techniques encouraged foam insulation to be inserted between the window and the rough opening all the way to the nailing flange that is used to secure the window. This insulation prevented moisture from reaching the sill, from which it could drain or evaporate. Instead, the foam directed the water into the interior of the building. Alternatively, water that did reach the sill could become trapped behind the insulation and be prevented from draining or evaporating. In this case, the water may cause rotting inside the framing.
The present invention creates a barrier in the space between the window and the rough opening that prevents the foam from reaching the nailing flange. On the interior side of this barrier, the foam is installed normally. On the exterior side of this barrier a channel is created. This channel preferably runs around the circumference of the window. The channel allows water that enters behind the nailing flange the ability to drain down to the window sill where it can drain or evaporate.
To form the barrier, a gasket can be constructed around the perimeter of the window. This gasket is sized to engage the rough opening, such that it forms a barrier running from the window to the rough opening. Alternatively, the gasket can be sized to extend at least half way into the space between the window and the opening.
The gasket can be attached to the window during window manufacture. Alternatively, the gasket can be sold separately and attached to the window at the installation site. The gasket may also be directly attached to the rough opening itself, where it will then engage the window frame when the window is installed. The gasket can be relatively straight, extending perpendicularly from the window or rough opening and then bending during window installation. Alternatively, the gasket can be curved. The curved gasket can be sized large enough to span a large space between the window and the rough opening, and can be compressed easily to span a much smaller space. If designed to engage the rough opening, the gasket should be flexible so as to bend during the insertion of the window. If actual engagement is not anticipated, the gasket can be rigid. Finally, the barrier can be formed with a disintegrating object that disintegrates once the insulation has be installed, or a wicking object that remains in the channel to block the foam insulation while still allowing water to reach the sill.
The inventor of the present invention has discovered a significant problem with prior art windows and installation techniques as illustrated in
Unfortunately, the construction technique described above does not allow the first requirement to be met. Moisture will often enter into the window cavity 202 at the top 120 and sides 130 of the window 100. Assuming that there is no failure in the window itself, the moisture enters at these locations under the nailing flange 170. While the sealant applied under the flange 170 should help prevent this, gaps or cracks in the sealant are inevitable. The moisture that seeps under the nailing flange 170 will enter the space 310 between the window 100 and the rough opening 200. At this point, the foam 320 that was installed all the way to the nailing flange 170 will interfere with the ability of the moisture to find its way down to the sill 230. The problem is that the foam material 320 is permitted to fill the space 310 all the way to the nailing flange 170. At some point, the foam 320 will form a blockage against the nailing flange 170, and prevent any further downward movement of the moisture toward the sill 230. In addition, since the foam insulation 320 is never perfectly formed, cracks and gaps in the foam 320 form passageways that permit the water to move toward the interior 240 of the rough opening 200. In fact, once the foam insulation 320 has formed a blockage with the nailing flange 170, the only place for the water to go is toward the interior of the building. There the water remains, leading to water damage and molding issues.
The present invention involves a plurality of techniques to ensure that the foam material 320 that is applied from the interior 240 of a building in the space 310 between the window 100 and the rough opening 200 is not allowed to reach the nailing flange 170. By doing so, a channel or gap is created between the insulation 320 and the flange 170 that allows all moisture that enters anywhere around the edge of the window 100 to drain properly to the sill 230.
The first such technique is shown in
As shown in the cross-sectional view in
In a first embodiment, the gasket 400 engages and flexes against the opening 200 when the window 100 is inserted into the window. To help assist the tongue-and-groove fitting in securing the gasket 400, the gasket 400 is also formed with a base section 420 that abuts the window frame 200. This base section helps keep the gasket 400 relatively perpendicular vis a vis the exterior surface of the window frame 200. When designed to engage the opening 200, it is important to manufacture the gasket 400 out of a significantly flexible material to allow the gasket 400 to bend during insertion.
One advantage of permanently attaching the gasket 400 on the peripheral faces 160 of the window 100 is that the gasket 400 can be added during the construction of the window 100 itself. In this way, the window manufacturer can be responsible for securely attaching the gasket 400. The window 100 is then delivered to the construction site with the gasket attached, where the window installer can install the window 100 and gasket 400 combination in much the same as any ordinary window 100. Window manufacturers may use any known technique to attach the gasket 400 to the window 100, including protrusions and channels, or by nailing or stapling the gasket 400 directly to the window frame 120. Alternatively, the gasket can be formed as an integral part of the window frame 120 itself.
As shown in
The other portion of the space 310 divided by the gasket 400 is the gap or channel 500 formed adjacent the nailing flange 170. Because the gasket 400 is formed on at least the top 140 and sides 130 of the window frame 120, the formed channel 500 is ensured of existing at these locations as well. In this way, the gasket 400 will allow for any moisture that penetrates the opening around a window 100 to have the proper channel 500 to continue its movement down toward the sill 150 and ultimately out to the exterior 250 of the building. In addition, the gasket 400 itself serves as a barrier to any water or moisture that enters the channel 500, and helps to prevent that water from entering into the interior or framing of the building.
In this embodiment an entire width of the gasket structure 400 from one side 130 to the other side 130 of the window 100 is slightly larger than that of the largest recommended rough opening 200, as defined by the window manufacturer. The gasket 400 should also be large enough to account for a non-centered window 100, so that the gasket 400 will still engage the opening 200. The gasket 400 should be rigid enough to hold its position in space 310 against insulation 320, yet be flexible enough to handle a small space 310 that might be created in a non-centered window 100. The flexibility should also be great enough so as not to hinder the simple installation of a window. In the preferred embodiment, the gasket 400 can be constructed of almost any material that can meet these basic properties, including open or closed cell foam plastics, natural or synthetic rubber, or the like. If a rigid gasket 400 is to be used, the choice of materials would be even broader, including wood, metal, and hard plastics.
Alternatively, a gasket 420 can be created that is designed to be installed directly onto the rough opening 200, as shown in
Another embodiment of the present invention is to replace the disintegrating object 440 with a wicking object 450, as shown in
The present invention is not limited to window frames 120, but would be equally applicable to any framed item that is inserted into an opening of a building. For instance,
Window frames 120 may be completely smooth on their exterior jamb surfaces, or they may have minor bumps and ridges 122 as shown in
The many features and advantages of the invention are apparent from the above description. Numerous modifications and variations will readily occur to those skilled in the art. Since such modifications are possible, the invention is not to be limited to the exact construction and operation illustrated and described. Rather, the present invention should be limited only by the following claims.
This application is a continuation of U.S. patent application Ser. No. 14/719,445, filed May 22, 2015 and now U.S. Pat. No. 9,422,762, which in turn is a continuation of U.S. patent application Ser. No. 14/285,786, filed May 23, 2014 and now U.S. Pat. No. 9,038,334 (the '786 application). The '786 application is a continuation of U.S. patent application Ser. No. 13/653,007, filed Oct. 16, 2012 (the '007 application, and now U.S. Pat. No. 8,745,939). The '007 application is a divisional application of U.S. patent application Ser. No. 11/584,328, filed on Oct. 18, 2006 (now U.S. Pat. No. 8,302,353), which in turn is a continuation-in-part of U.S. patent application Ser. No. 11/251,221, filed on Oct. 14, 2005, which in turn claimed the benefit of U.S. Provisional Application No. 60/619,343, filed on Oct. 15, 2004.
Number | Name | Date | Kind |
---|---|---|---|
1352732 | Egerton | Sep 1920 | A |
1741781 | Lane | Dec 1929 | A |
1798720 | Bums | Mar 1931 | A |
2293292 | Goellner | Aug 1942 | A |
3140517 | Richter | Jul 1964 | A |
3385001 | Bordner | May 1968 | A |
4204373 | Davidson | May 1980 | A |
4344265 | Davidson | Aug 1982 | A |
4447989 | Mailand et al. | May 1984 | A |
4510715 | Giguere | Apr 1985 | A |
4606147 | Dewitt | Aug 1986 | A |
4679373 | Ludwig | Jul 1987 | A |
4691477 | Governale | Sep 1987 | A |
4720936 | Ellingson | Jan 1988 | A |
4995207 | Powis | Feb 1991 | A |
4999957 | Kessler | Mar 1991 | A |
5243787 | Mott et al. | Sep 1993 | A |
5375376 | Scott | Dec 1994 | A |
6256956 | Davis | Jul 2001 | B1 |
6718716 | Cowie | Apr 2004 | B2 |
7022631 | Schmid | Apr 2006 | B2 |
8844219 | Neal | Sep 2014 | B2 |
Number | Date | Country |
---|---|---|
3022936 | Dec 1981 | DE |
19641415 | Apr 1998 | DE |
10109592 | Nov 2002 | DE |
10109692 | Nov 2002 | DE |
10334713 | Feb 2004 | DE |
1213430 | Jun 2002 | EP |
1426540 | Jun 2004 | EP |
14626540 | Jun 2004 | EP |
1452664 | Sep 2004 | EP |
2005010308 | Feb 2005 | WO |
2005012681 | Feb 2005 | WO |
WO 2005010308 | Feb 2005 | WO |
Entry |
---|
Dec. 6, 2012 USPTO Office Action (U.S. Appl. No. 13/653,007)—Our Matter 4914. |
Jan. 1, 2015 USPTO Office Action (U.S. Appl. No. 14/719,445)—Our Matter 5265. |
Jan. 10, 2013 USPTO Office Action (U.S. Appl. No. 13/653,007)—Our Matter 4914. |
Jan. 2, 2014 USPTO Office Action (U.S. Appl. No. 14/285,786)—Our Matter 5155. |
Number | Date | Country | |
---|---|---|---|
20160356072 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
60619343 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11584328 | Oct 2006 | US |
Child | 13653007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14719445 | May 2015 | US |
Child | 15240439 | US | |
Parent | 14285786 | May 2014 | US |
Child | 14719445 | US | |
Parent | 13653007 | Oct 2012 | US |
Child | 14285786 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11251221 | Oct 2005 | US |
Child | 11584328 | US |