Water jet propeller

Information

  • Patent Grant
  • 6659816
  • Patent Number
    6,659,816
  • Date Filed
    Thursday, August 15, 2002
    21 years ago
  • Date Issued
    Tuesday, December 9, 2003
    20 years ago
Abstract
To simplify a mounting job for a filter and a lid at a water intake port. A filter accommodation chamber of a cylindrical shape forms a water intake port that is provided in a side wall of a stator having therein an impeller rotatably disposed. A filter of a cylindrical shape is placed in the filter accommodation chamber and an opening in the filter accommodation chamber is closed by a lid of a circular shape through either screwing or press-fitting. A flow path is integrally formed with a peripheral wall of the filter accommodation chamber. A bottom portion of the cylindrical filter is formed into an inclined surface. An inclined step portion, which abuts against an edge portion of the inclined surface of filter, is formed in the filter accommodation chamber. In addition, an opening, which communicates with the flow path when the inclined surface edge portion of the cylindrical filter and the inclined step portion abut against each other so that the two are brought into coincidence with each other, is formed in the cylindrical filter. Part of an inner peripheral surface of the filter accommodation chamber and part of an outer peripheral surface of the cylindrical filter may be formed into a flat surface.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a water jet propeller used in ships and, more particularly, to a structure of a water intake port thereof.




2. Description of Background Art




Japanese Patent Laid-open No. Hei 10-119883 discloses a conventional water jet propeller.




FIGS.


6


(


a


) to


6


(


c


) illustrate the water jet propeller, with FIG.


6


(


a


) being a cross-sectional view, FIG.


6


(


b


) being an enlarged cross-sectional view taken along line b—b in FIG.


6


(


a


), and FIG.


6


(


c


) being a cross-sectional view taken along line c—c in FIG.


6


(


a


).




The water jet propeller is mounted to a rear portion of a ship body


1


. There is provided a water intake port


5


provided with a filter


4


in a side wall of a stator


3


, in which an impeller


2


is rotatably disposed.




The impeller


2


is coupled to a drive shaft


6


, a front portion of which is coupled to an output shaft of an engine not shown. When the impeller


2


is rotatably driven by the engine and spurts of a stream of water are sent through a nozzle


3




a


of the stator


3


to propel the ship body


1


.




As shown in FIG.


6


(


b


), the water intake port


5


is opened in a substantially rectangular shape. A substantially rectangular filter


4


is then mounted in this opening which, in turn, is covered with a lid member


7


which also is of a substantially rectangular shape.




The lid member


7


is provided integrally with a pipe section


7




a


that communicates with the water intake port


5


. A flexible hose


9


is connected by way of a connection pipe


8


to the pipe section


7




a


. An end portion not shown of the flexible hose


9


is, in turn, connected to the engine.




When the impeller


2


is rotatably driven, therefore, part of a water stream on a downstream side thereof is supplied from the water intake port


5


to the engine by way of the filter


4


and further through the pipe section


7




a


of the lid member


7


, the connection pipe


8


, and the flexible hose


9


, thus being used as engine coolant.




Referring to FIGS.


6


(


b


) and


6


(


c


), the filter


4


is provided with a flange


4




b,


while the lid member


7


is also provided with a flange


7




b


. The filter


4


and the lid member


7


are jointly fastened together using four bolts


7




c


with the flanges


4




b


,


7




b


mated to each other. Thus, the filter


4


and the lid member


7


are removably mounted with respect to the side portion of the stator


3


.




According to the conventional water jet propeller described in the foregoing paragraphs, the filter


4


and the lid member


7


of the water intake port


5


are shaped into a substantially rectangle, and they are mounted to the stator


3


by jointly fastening them together using four bolts


7




c


with the flanges


4




b


,


7




b


mated to each other. This makes the mounting job extremely laborious.




SUMMARY AND OBJECTS OF THE INVENTION




It is therefore an object of the present invention to solve this problem and to provide a water jet propeller that allows a filter and a lid to be mounted with ease.




To achieve the foregoing object, according to the present invention, there is provided a water jet propeller wherein a water intake port includes a filter that is provided in a side wall of a stator containing a rotatable impeller, wherein the side wall of the stator is provided with a tubular filter accommodation chamber that forms the water intake port. A tubular filter is housed in the filter accommodation chamber and an opening is formed in a circular shape in the filter accommodation chamber and is closed by a circular lid through tightening screws or press-fitting.




According to the present invention, a flow path is integrally formed with respect to a peripheral wall of the filter accommodation chamber and a bottom portion of the tubular filter is formed by an inclined surface that is inclined with respect to an axial direction of the tubular filter. In addition, an inclined step portion is formed in the filter accommodation chamber so as to abut against and receive an edge portion of the inclined surface of the tubular filter. An opening, which communicates with the flow path when the inclined surface edge portion abuts against the inclined step portion so that the two portions are brought into coincidence with each other, is formed in the tubular filter.




According to the present invention, a flow path is integrally formed with respect to a peripheral wall of the filter accommodation chamber. An inner peripheral surface of the filter accommodation chamber and an outer peripheral surface of the tubular filter are partially formed into a flat surface. An opening, which communicates with the flow path when the flat surface portion of the tubular filter coincides with the flat surface portion of the filter accommodation chamber, is formed in the tubular filter.




In the water jet propeller according to the present invention, the water intake port that includes the filter is provided in the side wall of the stator containing the rotatable impeller. The tubular filter accommodation chamber forming the water intake port is provided in the side wall of the stator. The tubular filter is housed in the filter accommodation chamber with the circular opening formed in the filter accommodation chamber. The circular lid is either screwed or press-fitted in position to close the circular opening. According to the water jet propeller having this arrangement, the filter and the lid can be mounted to the side wall of the stator by simply closing the opening in the filter accommodation chamber through either screwing or press-fitting, after the tubular filter has been placed in the tubular filter accommodation chamber.




Namely, in the water jet propeller according to the present invention, it is remarkably easier to mount the filter and the lid than in the conventional arrangement.




According to the water jet propeller of the present invention, the flow path is integrally formed with respect to the peripheral wall of the filter accommodation chamber and the bottom portion of the tubular filter is formed by the inclined surface that is inclined with respect to the axial direction of the tubular filter, the inclined step portion is formed in the filter accommodation chamber so as to abut against and receive the edge portion of the inclined surface of the tubular filter. The opening, which communicates with the flow path when the inclined surface edge portion abuts against the inclined step portion so that the two portions are brought into coincidence with each other, is formed in the tubular filter. All this offers the following function.




Namely, in the conventional water jet propeller described earlier, the flow path from the filter accommodation chamber is formed by the pipe section


7




a


that is integrated with the lid member


7


. Therefore, if the lid member


7


is mounted in a reverse direction with respect to a fore-and-aft direction, the flow path


7




a


is also mounted in a reverse direction with respect to the fore-and-aft direction. More attention should therefore be paid to the mounting of the lid member


7


, thus making the mounting job even more laborious.




According to the water jet propeller of the present invention, on the other hand, the problems inherent in the conventional technology will not occur, since the flow path is formed integrally with respect to the peripheral wall of the filter accommodation chamber.




In addition, the bottom portion of the tubular filter is formed by the inclined surface that is inclined with respect to the axial direction of the tubular filter, the inclined step portion is formed in the filter accommodation chamber so as to abut against and receive the edge portion of the inclined surface of the tubular filter. In view of the opening, which communicates with the flow path when the inclined surface edge portion abuts against the inclined step portion so that the two portions are brought into coincidence with each other, formed in the tubular filter, the flow path in the filter accommodation chamber and the opening in the filter are automatically brought into communication with each other when the tubular filter is inserted in the filter accommodation chamber and the edge portion of the inclined surface of the tubular filter abuts against (or fit into) the inclined step portion of the filter accommodation chamber.




This helps make the mounting job of the filter and the lid even easier.




According to the water jet propeller of the present invention, the flow path is integrally formed with respect to the peripheral wall of the filter accommodation chamber. The inner peripheral surface of the filter accommodation chamber and the outer peripheral surface of the tubular filter are partially formed into the flat surface and the opening, which communicates with the flow path when the flat surface portion of the tubular filter coincides with the flat surface portion of the filter accommodation chamber, is formed in the tubular filter. This offers the following additional function.




Namely, as described earlier, in the conventional water jet propeller, the flow path from the filter accommodation chamber is formed by the pipe section


7




a


that is integrated with the lid member


7


and, therefore, if the lid member


7


is mounted in a reverse direction with respect to the fore-and-aft direction, the flow path


7




a


is also mounted in a reverse direction with respect to the fore-and-aft direction. More attention should therefore be paid to the mounting of the lid member


7


, thus making the mounting job even more laborious.




According to the present invention, on the other hand, the problems inherent in the conventional technology will not occur, since the flow path is formed integrally with respect to the peripheral wall of the filter accommodation chamber.




Since the inner peripheral surface of the filter accommodation chamber and the outer peripheral surface of the tubular filter are partially formed into the flat surface, and the opening, which communicates with the flow path when the flat surface portion of the tubular filter coincides with the flat surface portion of the filter accommodation chamber, is formed in the tubular filter, the flow path in the filter accommodation chamber and the opening in the filter are automatically brought into communication with each other when the tubular filter is inserted in the filter accommodation chamber so that both of the above-mentioned flat surface portions coincide with each other.




Therefore, the job of mounting the filter and the lid becomes even easier.




Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:





FIG. 1

is a partly cutaway schematic side elevational view showing a typical small planing boat employing one embodiment of a water jet propeller according to the present invention;





FIG. 2

is a schematic plan view showing the same;




FIGS.


3


(


a


)-


3


(


b


) illustrate the jet pump


30


, FIG.


3


(


a


) being a fragmentary side sectional view and FIG.


3


(


b


) being a cross-sectional view taken along line b—b in FIG.


3


(


a


);




FIGS.


4


(


a


)-


4


(


d


) illustrate a stator


31


of the jet pump


30


, FIG.


4


(


a


) being a front elevational view (looking the ship body from the front), FIG.


4


(


b


) being a side elevational view, FIG.


4


(


c


) being a plan view of FIG.


4


(


b


), and FIG.


4


(


d


) being a cross-sectional view taken along line d—d in FIG.


4


(


c


);




FIGS.


5


(


a


)-


5


(


d


) illustrate a filter, FIG.


5


(


a


) being a side elevational view (as viewed from the side of the ship body from a side), FIG.


5


(


b


) being a plan view of FIG.


5


(


a


), FIG.


5


(


c


) being a side elevational view of FIG.


5


(


a


), and FIG.


5


(


d


) being a cross-sectional view taken along d—d in FIG.


5


(


a


); and




FIGS.


6


(


a


),


6


(


b


) and


6


(


c


) are explanatory drawings of the conventional technology.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The embodiments of the present invention will be described with reference to the accompanying drawings.





FIG. 1

is a partly cutaway schematic side elevational view showing a typical small planing boat employing one embodiment of a water jet propeller according to the present invention.

FIG. 2

is a schematic plan view showing the same.




As shown in

FIGS. 1 and 2

, a small planing boat


10


is a riding type small watercraft, in which a passenger sits on a seat


12


on a ship body


11


and grips a handlebar


13


provided with a throttle lever to steer the boat.




The ship body


11


is of a floating body structure that forms a space


16


internally between a hull


14


and a deck


15


joined to each other. An engine


20


is installed on the hull


14


inside the space


16


. In addition, a water jet propeller (hereinafter referred to also as a jet pump)


30


is provided as a propulsion means driven by the engine


20


that is installed in a rear portion of the hull


14


.




The jet pump


30


is provided with an impeller


32


disposed inside a flow path


18


that extends from a water inlet port


17


opened in a bottom of the boat to a jet port


31




c




2


opened in a trailing edge of the ship body. A deflector


38


is provided adjacent to the jet port


31




c




2


. A shaft (drive shaft)


22


for driving the impeller


32


is coupled to an output shaft


21


of the engine


20


by way of a coupler


23


. When the impeller


32


is rotatably driven by the engine


20


through the coupler


23


and the shaft


22


spurts of water taken in through the water inlet port


17


are sent from the jet port


31




c




2


through the deflector


38


, thus propelling the ship body


11


. A driving speed of the engine


20


, or a propulsion force provided by the jet pump


30


, is controlled by circularly moving a throttle lever


13




a


(see

FIG. 2

) of the handlebar


13


either forward or backward. The deflector


38


is connected to the handlebar


13


through a control cable not shown. It is operated as the handlebar


13


is turned either forward or backward as necessary to change a direction of travel of the ship body


11


.




Referring to FIGS.


3


(


a


) and


3


(


b


), the jet pump


30


is provided with a stator (duct)


31


that forms the flow path


18


communicating with the water inlet port


17


(see

FIG. 1

) provided in the bottom portion of the ship body


11


, with the impeller


32


disposed inside the stator


31


. A bearing portion


33


of the impeller is provided inside the stator


31


. A cap


34


plugs up a trailing edge of the bearing portion


33


.




The jet pump


30


is mounted removably to the hull


14


when a flange portion


31




d


(see FIGS.


4


(


a


)-


4


(


d


)) formed at a front portion of the stator


31


is secured to the hull


14


using bolts not shown.




The stator


31


is provided with an impeller accommodation portion


31




a


, inside which the impeller


32


is disposed, a bearing accommodation portion


31




b


, and a nozzle portion


31




c


(see FIG.


1


). The impeller accommodation portion


31




a


and the bearing accommodation portion


31




b


are formed integrally with each other. The bearing portion


33


is formed integrally within the bearing accommodation portion


31




b


through a stator blade


31




b




1


.




A front portion of a boss portion


32




a


of the impeller


32


is engaged with splines


22




b


formed on a rear end of the drive shaft


22


and the impeller


32


turns with the drive shaft


22


. As noted earlier, the leading edge of the drive shaft


22


is coupled to the output shaft


21


of the engine


20


mounted in the ship body


11


through the coupler


23


(FIG.


1


).




An impeller shaft


35


, which supports a rear portion


32




b


of the boss portion


32




a


of the impeller


32


, is rotatably supported on the bearing portion


33


through ball bearings


33




a


,


33




b


. External threads


35




a


are formed on a leading edge of the impeller shaft


35


. The external threads


35




a


engage internal threads formed on the rear portion


32




b


of the boss portion of the impeller


32


, which provides a connection between the impeller


32


and the impeller shaft


35


.




In summary, the front portion of the boss portion


32




a


of the impeller


32


is coupled to the shaft


22


, while the rear portion


32




b


of the boss portion is coupled to the impeller shaft


35


, which allows the impeller


32


to turn with the shaft


22


and the impeller shaft


35


.




There are formed, at a front portion of the cap


34


, an insertion portion (a cylindrical portion)


34




b


to be inserted into a rear portion of the bearing portion


33


and three (only one is shown) insertion holes


34




c


for a screw


36


(see FIG.


3


(


a


)). A groove, into which an O-ring


34




e


is mounted, is formed at the cylindrical insertion portion


34




b.






The cap


34


is therefore mounted to the rear portion of the bearing portion


33


as follows. Namely, the insertion portion


34




b


is inserted (press-fitted) into the rear portion of the bearing portion


33


with the O-ring


34




e


mounted to the insertion portion


34




b


as shown in FIG.


3


(


a


) and the screw


36


is finally tightened.




A partial cutout


34




d


is formed on an abutting surface between the cap


34


and the bearing portion


33


. During maintenance service procedures, the cap


34


can be easily removed by inserting a tip of a tool (for example, a screwdriver) into this cutout


34




d


with the screw


36


removed.




Referring to

FIGS. 3 and 4

, a filter accommodation chamber


31




g


of a tubular shape (a cylindrical shape according to the embodiment) is formed integrally on a side wall


31




e


of the stator


31


, serving to form a water intake port


31




f


in a portion downstream of the impeller


32


. A filter


40


of a tubular shape (a cylindrical shape according to the embodiment) is housed in the filter accommodation chamber


31




g


as shown in FIG.


3


(


b


). An opening


31




h


in the filter accommodation chamber


31




g


is closed by a circular lid


50


that is screwed into position. The opening


31




h


may instead be closed by press-fitting the lid


50


.




Referring to FIGS.


4


(


a


)-


4


(


d


), a flow path


31




j


, through which water from the water intake port


31




f


flows in, is integrally formed in a peripheral wall


31




i


of the filter accommodation chamber


31




g


. A coolant hose is connected to an end portion


31




k


of the flow path


31




j


by way of a joint pipe not shown, through which coolant is supplied to the engine


20


.




Referring to FIGS.


5


(


a


)-


5


(


d


), the filter


40


is provided with a cylindrical portion


41


and a bottom portion


42


formed integrally therewith. A number of holes


43


are made in the bottom portion


42


. The diameter of each of the holes


43


should be about 3 mm.




In addition, there is formed an opening


44


of a U-shaped cutout in the cylindrical portion


41


.




Referring to FIG.


4


(


b


), part of an inner peripheral surface of the filter accommodation chamber


31




g


is formed into a flat surface (the flat surface portion is indicated by a reference numeral


31




m


). Referring further to FIGS.


5


(


a


) and


5


(


c


), part of an outer peripheral surface of the tubular filter


40


is also shaped into a flat surface (the flat surface portion is indicated by a reference numeral


45


).




When the filter


40


is inserted into the filter accommodation chamber


31




g


, therefore, unless these flat surface portions


31




m


and


45


are properly aligned with each other, the filter


40


cannot be inserted. When the filter


40


is inserted into the filter accommodation chamber


31




g


with the flat surface portions


31




m


and


45


aligned, the opening


44


in the filter


40


opposes the flow path


31




j


in the filter accommodation chamber


31




g


brings the two into communication with each other [see FIG.


3


(


b


)].




Furthermore, according to the embodiment, the bottom portion


42


of the tubular filter


40


is formed by an inclined surface


46


that is inclined with respect to an axial direction [a right-and-left direction in FIGS.


5


(


c


) and


5


(


d


)] of the tubular filter


40


, as shown in FIGS.


5


(


a


)-


5


(


d


). As shown further in FIG.


3


(


b


) and FIG.


4


(


d


), an inclined step portion


31




n


, which abuts against and receives an edge portion


47


of the inclined surface


46


of the tubular filter


40


, is formed in the filter accommodation chamber


31




g.






When the filter


40


is inserted into the filter accommodation chamber


31




g


, therefore, the inclined surface


46


at the bottom portion


42


of the filter must be brought into coincidence with the inclined step portion


31




n


of the filter accommodation chamber


31




g


, otherwise, a head portion


48


of the filter


40


protrudes from the filter accommodation chamber


31




g


, thus preventing the filter


40


from being completely housed in the filter accommodation chamber


31




g


, which hampers the lid


50


from being mounted in position. If the inclined surface


46


of the filter bottom portion


42


is brought into coincidence with the inclined step portion


31




n


of the filter accommodation chamber


31




g


as the filter is inserted into the filter accommodation chamber


31




g


, the opening


44


in the filter


40


opposes the flow path


31




j


in the filter accommodation chamber


31




g,


bringing the two into communication with each other [see FIG.


3


(


b


)].




According to this embodiment, the following two arrangements are employed; namely:




an arrangement, in which partial flat surface portions


31




m


and


45


are formed on the inner peripheral surface of the filter accommodation chamber


31




g


and the outer peripheral surface of the filter


40


; and,




ii. an arrangement, in which the bottom portion


42


of the tubular filter


40


is made into the inclined surface


46


and the inclined step portion


31




n


is formed in the filter accommodation chamber


31




g.






It is nonetheless possible to employ either one of these two arrangements i and ii.




Referring to FIGS.


3


(


a


)-


3


(


b


), a hexagon recessed portion


51


is formed in the lid


50


at a head portion thereof and, in addition, external threads


52


are formed on an outer periphery thereof. Internal threads


31




p


are formed, on the other hand, on an inner peripheral surface on an upper portion of the filter accommodation chamber


31




g.






The opening


31




h


in the filter accommodation chamber


31




g


can be easily plugged with the lid


50


by a manner that when, after the filter


40


has been housed in the filter accommodation chamber


31




g


as described above, the two types of threads


52


,


31




p


are brought into threaded engagement with each other by a tool engaged in the hexagon recessed portion


51


in the lid.




According to the embodiment, referring to FIG.


3


(


a


) and FIG.


4


(


b


), there is provided a partial recessed portion


31




q


on an inner peripheral surface in the opening


31




h


of the filter accommodation chamber


31




g


. After the lid


50


has been mounted in the opening


31




h


of the filter accommodation chamber


31




g


, a tool is inserted into the recessed portion


31




q


for collapsing the threads


52


in the lid


50


, thereby preventing the lid


50


from thereafter turning and thus preventing the lid


50


from coming off the filter accommodation chamber


31




g.






According to the water jet propeller having arrangements as described above, the following operational effects can be achieved.




The tubular filter accommodation chamber


31




g


that forms the water intake port


31




f


is provided on the side wall


31




e


of the stator


31


, inside which the impeller


32


is rotatably disposed. The tubular filter


40


is housed in the filter accommodation chamber


31




g


. The opening


31




h


is formed circularly in the filter accommodation chamber


31




g


and is closed by the circular lid


50


through screwing or press-fitting. Thanks to this arrangement, the filter


40


and the lid


50


can be mounted to the side wall


31




e


of the stator


31


by placing the tubular filter


40


in the tubular filter accommodation chamber


31




g


and closing the opening


31




h


in the filter accommodation chamber


31




g


with the circular lid


50


through screwing or press-fitting.




Namely, according to this water jet propeller, the mounting job of the filter


40


and the lid


50


is made remarkably simpler as compared with the conventional type.




(b) The flow path


31




j


is integrally formed with respect to the peripheral wall of the filter accommodation chamber


31




g


. The bottom portion of the tubular filter


40


is formed by the inclined surface


46


that is inclined with respect to the axial direction of the tubular filter. The inclined step portion


31




n


, which abuts against and receives the edge portion


47


of the inclined surface


46


of the tubular filter


40


, is formed in the filter accommodation chamber


31




g


. In addition, the opening


44


, formed in the tubular filter


40


, communicates with the flow path


31




j


when the inclined surface edge portion


47


and the inclined step portion


31




n


abut against each other so as to bring the two into coincidence with each other. These arrangements offer the following additional operational effects.




Namely, in the conventional water jet propeller described earlier, the flow path from the filter accommodation chamber is formed by the pipe section


7




a


formed integrally with the lid member


7


. As a result, if the lid member


7


is mounted in a reverse direction with respect to a fore-and-aft direction, the flow path


7




a


is also mounted in a reverse direction with respect to the fore-and-aft direction. More attention should therefore be paid to the mounting of the lid member


7


, thus making the mounting job even more laborious.




According to the water jet propeller according to the embodiment of the present invention, on the other hand, such a problem inherent in the conventional technology will not occur, since the flow path


31




j


is formed integrally with respect to the peripheral wall of the filter accommodation chamber


31




g.






Furthermore, the bottom portion of the tubular filter


40


is formed by the inclined surface


46


that is inclined with respect to the axial direction of the tubular filter. The inclined step portion


31




n


, which abuts against and receives the edge portion


47


of the inclined surface


46


of the tubular filter


40


, is formed in the filter accommodation chamber


31




g


. In addition, the opening


44


, formed in the tubular filter


40


, communicates with the flow path


31




j


when the inclined surface edge portion


47


and the inclined step portion


31




n


abut against each other so as to bring the two into coincidence with each other. The flow path


31




j


in the filter accommodation chamber


31




g


and the opening


44


in the filter


40


are automatically brought into communication with each other. Therefore, when the tubular filter


40


is inserted in the filter accommodation chamber


31




g


the edge portion


47


of the inclined surface


46


of the tubular filter


40


abuts against (or fit into) the inclined step portion


31




n


of the filter accommodation chamber


31




g.






This helps make the mounting job of the filter


40


and the lid


50


even easier.




(c) Part of the inner peripheral surface of the filter accommodation chamber


31




g


and part of the outer peripheral surface of the tubular filter


40


are formed into a flat surface (


31




m


,


45


). In addition, there is formed in the tubular filter


40


the opening


44


that communicates with the flow path


31




j


when the flat surface portion


45


of the tubular filter


40


and the flat surface portion


31




m


of the filter accommodation chamber


31




g


are brought into coincidence with each other. When the tubular filter


40


is inserted into the filter accommodation chamber


31




g


so as to bring the two flat surface portions


31




m


and


45


into coincidence with each other, it automatically causes the flow path


31




j


in the filter accommodation chamber


31




g


to communicate with the opening


44


in the filter


40


.




The mounting job for the filter


40


and the lid


50


will therefore become even easier.




While the invention has been described with reference to preferred embodiments thereof, it is to be understood that the invention is not limited to the preferred embodiments or structures. Rather, the invention is intended to cover various modifications within the spirit and scope of the invention.




The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.



Claims
  • 1. A water jet propeller including a water intake port having a filter being disposed therein and being provided in a side wall of a stator containing a rotatable impeller comprising:a tubular filter accommodation chamber being formed in the side wall of the stator, said tubular filter accommodation chamber forming the water intake port; a tubular filter being positioned within the filter accommodation chamber; and an opening formed in a circular shape in the filter accommodation chamber and being closed by a circular lid with screw threads.
  • 2. The water jet propeller according to claim 1, wherein a flow path is integrally formed with respect to a peripheral wall of the filter accommodation chamber, a bottom portion of the tubular filter is formed by an inclined surface that is inclined with respect to an axial direction of the tubular filter, an inclined step portion is formed in the filter accommodation chamber so as to abut against and receive an edge portion of the inclined surface of the tubular filter, and an opening, which communicates with the flow path when the inclined surface edge portion abut against the inclined step portion so that the two portions are brought into coincidence with each other, is formed in the tubular filter.
  • 3. The water jet propeller according to claim 1, wherein a flow path is integrally formed with respect to a peripheral wall of the filter accommodation chamber, an inner peripheral surface of the filter accommodation chamber and an outer peripheral surface of the tubular filter are partially formed into a flat surface, and an opening, which communicates with the flow path when the flat surface portion of the tubular filter coincides with the flat surface portion of the filter accommodation chamber, is formed in the tubular filter.
  • 4. The water jet propeller according to claim 2, wherein said tubular filter is cylindrical in shape and includes the inclined surface formed integrally therewith, said inclined surface forming a bottom of said tubular filter.
  • 5. The water jet propeller according to claim 4, wherein said inclined surface includes a plurality of apertures in communication with water being disposed within said stator.
  • 6. The water jet propeller according to claim 3, wherein the opening in said tubular filter extends from one end that is brought into communication with a flow path when said tubular filter is inserted into said filter accommodation chamber with said flat surface being aligned relative to each other.
  • 7. The water jet propeller according to claim 6, wherein the flat surface on said tubular filter is offset by a predetermined angle relative to said opening in said tubular filter.
  • 8. A water jet propeller including a water intake port having a filter being disposed therein and being provided in a side wall of a stator containing a rotatable impeller comprising:a tubular filter accommodation chamber being formed in the side wall of the stator, said tubular filter accommodation chamber forming the water intake port; a tubular filter being positioned within the filter accommodation chamber; and an opening formed in a circular shape in the filter accommodation chamber and being closed by a circular lid by press-fitting.
  • 9. The water jet propeller according to claim 8, wherein a flow path is integrally formed with respect to a peripheral wall of the filter accommodation chamber, a bottom portion of the tubular filter is formed by an inclined surface that is inclined with respect to an axial direction of the tubular filter, an inclined step portion is formed in the filter accommodation chamber so as to abut against and receive an edge portion of the inclined surface of the tubular filter, and an opening, which communicates with the flow path when the inclined surface edge portion abut against the inclined step portion so that the two portions are brought into coincidence with each other, is formed in the tubular filter.
  • 10. The water jet propeller according to claim 8, wherein a flow path is integrally formed with respect to a peripheral wall of the filter accommodation chamber, an inner peripheral surface of the filter accommodation chamber and an outer peripheral surface of the tubular filter are partially formed into a flat surface, and an opening, which communicates with the flow path when the flat surface portion of the tubular filter coincides with the flat surface portion of the filter accommodation chamber, is formed in the tubular filter.
  • 11. The water jet propeller according to claim 9, wherein said tubular filter is cylindrical in shape and includes the inclined surface formed integrally therewith, said inclined surface forming a bottom of said tubular filter.
  • 12. The water jet propeller according to claim 11, wherein said inclined surface includes a plurality of apertures in communication with water being disposed within said stator.
  • 13. The water jet propeller according to claim 10, wherein the opening in said tubular filter extends from one end that is brought into communication with a flow path when said tubular filter is inserted into said filter accommodation chamber with said flat surface being aligned relative to each other.
  • 14. The water jet propeller according to claim 13, wherein the flat surface on said tubular filter is offset by a predetermined angle relative to said opening in said tubular filter.
  • 15. A cooling water flow path adapted for use in cooling an engine comprising:a water intake port having a filter being disposed therein and being provided in a side wall of a stator containing a rotatable impeller: a tubular filter accommodation chamber being formed in the side wall of the stator, said tubular filter accommodation chamber forming the water intake port; a tubular filter being positioned within the filter accommodation chamber; and an opening formed in a circular shape in the filter accommodation chamber and being closed by a circular lid; wherein water supplied from said water intake port and through said tubular filter is adapted for being supplied to an engine for cooling the engine.
  • 16. The cooling water flow path adapted for use in cooling an engine according to claim 15, wherein a flow path is integrally formed with respect to a peripheral wall of the filter accommodation chamber, a bottom portion of the tubular filter is formed by an inclined surface that is inclined with respect to an axial direction of the tubular filter, an inclined step portion is formed in the filter accommodation chamber so as to abut against and receive an edge portion of the inclined surface of the tubular filter, and an opening, which communicates with the flow path when the inclined surface edge portion abut against the inclined step portion so that the two portions are brought into coincidence with each other, is formed in the tubular filter.
  • 17. The cooling water flow path adapted for use in cooling an engine according to claim 15, wherein a flow path is integrally formed with respect to a peripheral wall of the filter accommodation chamber, an inner peripheral surface of the filter accommodation chamber and an outer peripheral surface of the tubular filter are partially formed into a flat surface, and an opening, which communicates with the flow path when the flat surface portion of the tubular filter coincides with the flat surface portion of the filter accommodation chamber, is formed in the tubular filter.
  • 18. The cooling water flow path adapted for use in cooling an engine according to claim 16, wherein said tubular filter is cylindrical in shape and includes the inclined surface formed integrally therewith, said inclined surface forming a bottom of said tubular filter.
  • 19. The cooling water flow path adapted for use in cooling an engine according to claim 18, wherein said inclined surface includes a plurality of apertures in communication with water being disposed within said stator.
  • 20. The cooling water flow path adapted for use in cooling an engine according to claim 17, wherein the opening in said tubular filter extends from one end that is brought into communication with a flow path when said tubular filter is inserted into said filter accommodation chamber with said flat surface being aligned relative to each other.
  • 21. The cooling water flow path adapted for use in cooling an engine to claim 20, wherein the flat surface on said tubular filter is offset by a predetermined angle relative to said opening in said tubular filter.
Priority Claims (1)
Number Date Country Kind
2001-284064 Sep 2001 JP
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 USC 119 to Japanese Patent Application No. 2001-284064 filed on Sep. 18, 2001 the entire contents thereof is hereby incorporated by reference.

US Referenced Citations (3)
Number Name Date Kind
5472359 Allbright et al. Dec 1995 A
5713769 Jones Feb 1998 A
5752863 Baker et al. May 1998 A
Foreign Referenced Citations (1)
Number Date Country
10119883 May 1998 JP