Water-monitoring apparatus with anchor

Information

  • Patent Grant
  • 6486786
  • Patent Number
    6,486,786
  • Date Filed
    Tuesday, November 20, 2001
    23 years ago
  • Date Issued
    Tuesday, November 26, 2002
    22 years ago
Abstract
A water-monitoring apparatus includes an anchor for holding on to a bottom of the water, a buoy for floating on the water surface, a reel mounted on the buoy and a tension and signal cable including a lower end tied to the anchor and an upper end tied to the reel. The tension and signal cable is wound on the reel. A control device is connected with the reel. When the water level changes, the control device rotates the reel, thus adjusting a length of the tension and signal cable extending from the reel so that the buoy always float on the water surface. A shallow-water sensor is carried via the buoy for detecting a first environmental characteristic and for producing a first signal representative of the first environmental characteristic. A deep-water sensor is connected with the lower end of the tension and signal cable for detecting a second environmental characteristic and for producing a second signal representative of the second environmental characteristic. A signal relay is electrically connected with the upper end of the tension and signal cable. A transmitter transmits the first and second signals to a remote monitoring station.
Description




BACKGROUND OF INVENTION




1. Field of Invention




The present invention is directed to monitoring of water quality and, more particularly, to a water-monitoring apparatus with an anchor.




2. Related Prior Art




While developing, the world is encountering a more and more serious problem of pollution. Water pollution could be the worst among all sorts of pollution. A lot of pollutants are dumped to reservoirs and open channels from fixed sources, e.g., factories and farms, or from mobile sources, e.g., vehicles. Such pollutants may be released into water, or may be dumped on the land and then washed into the water by rain. Once introduced into the water, such pollutants inevitably increase costs in treating the water and very often harm human bodies, life stock and aquatic lives.




Therefore, it is important to solve these problems of pollution. However, before any proper measure can be taken to solve the problem of water pollution, pollutants and extent of pollution must be determined. Hence, various quality parameters of the water must be monitored.




In early days, prior to analyses, water was manually sampled. Manual sampling has always been expensive and cumbersome. Therefore, manual sampling was conducted on an irregular basis and rarely.




To achieve regular and frequent sampling, it must be done automatically. There have been installed some conventional monitoring stations into which water is automatically pumped through pipes. It is, however, found difficult to have the pipes catch up with the water level changing vigorously from season to season. When the water level becomes too low for the pipes to reach, it is impossible to pump water through the pipes.




To make sure that the water can be monitored continuously, there have been devised some water-monitoring apparatuses in which sensors are carried by means of a buoy tied to a bank or a well by means of a cable. To have the buoy float on the water when the water level is low, a sufficiently long cable is used. However, the cable allows the buoy to drift for a long distance in any direction when the water level is high. As the buoy drifts, the cable often tangles with miscellaneous objects, e.g., twigs. This could seriously affect the operation of the sensors.




To prevent the cable from. tangling with miscellaneous objects, there has been devised a length control device in which the cable is wound on a reel operatively connected with a motor. The motor can be activated to rotate the reel to adjust a length of the cable extending from the reel so that the sensors can always be immerged in water. However, the motor consumes a lot of energy.




In addition, to transmit signals from the sensors to a monitoring station, the cable is connected to the monitoring station through a signal relay including a mandrel electrically connected with the cable. The mandrel rotates together with the reel. The signal relay further includes a brush electrically connected with the monitoring station. The brush does not rotate. The mandrel is in rotational engagement with the brush, thus allowing the mandrel to rotate with respect to the brush while allowing the signals to be transmitted from the mandrel to the brush. However, friction between the mandrel and the brush interferes with the rotation of the reel and wears out the brush after serving for a period of time.




However, none of the above-mentioned water-monitoring apparatuses is suitable for use far from the bank. Hence, a water-monitoring apparatus has been devised to include a sensor carried by means of a buoy connected via a cable with an anchor or weight for holding on to a reservoir bottom or an ocean bed. Obviously, such a water-monitoring apparatus with an anchor can be employed far from the bank since it does not have to be tied to the bank. To have the buoy float on the water when the water level is high, a sufficiently long cable is used. However, when the water level is low, the cable allows the buoy to drift for a long distance in any direction. Sometimes, the buoy may drift to and get grounded on a slope by the water. This could seriously affect the operation of the sensor.




Therefore, the present invention is intended to alleviate or even obviate the afore-mentioned drawbacks that are encountered in the prior art.




SUMMARY OF INVENTION




It is an objective of the present invention to provide a water-monitoring apparatus for use far from the land.




It is another objective of the present invention to provide a water-monitoring apparatus capable of automatically tracing water level.




It is another objective of the present invention to provide a water-monitoring apparatus with a sensor-carrying cable of an automatically adjustable length.




It is another objective of the present invention to provide a water-monitoring apparatus with a sensor-carrying cable wound on a reel capable of automatic rotation for adjusting a length of the sensor-carrying cable extending from the reel.




In accordance with an aspect of the present invention, a water-monitoring apparatus includes at least one sensor carried by a buoy. The sensor is used to detect a water quality parameter. A reel is mounted on the buoy. A coil spring is used to exert a substantially constant torque on the reel. A cable is wound on the reel. The cable includes an upper end tied to the reel and a lower end tied to an anchor or weight for holding on to a water bottom.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a front view of a water-monitoring apparatus in accordance with an embodiment of the present invention;





FIG. 2

is a cross-sectional view of the water-monitoring apparatus shown in

FIG. 1

taken along a line


2





2


;





FIG. 3

is a front view of a water-monitoring apparatus in accordance with a second embodiment of the present invention; and





FIG. 4

is a cross-sectional view of the water-monitoring apparatus shown in

FIG. 1

taken along a line


4





4


.











DETAILED DESCRIPTION OF INVENTION





FIG. 1

shows a water-monitoring apparatus according to an embodiment of the present invention. The water-monitoring apparatus includes a buoy


10


for carrying a number of sensors


30


. Each sensor


30


is at least partly immerged in the water so as to detect a water quality parameter such as pH, temperature, oxygen content, conductivity, chlorine content, turbidity, heavy metal content, etc. and to produce a signal representative of the water quality parameter.




The sensors


30


may be used to detect a same water quality parameter and in this case are positioned at different distances from the buoy


10


. The sensors


30


may be used to detect different water quality parameters and in this case may be positioned at a same distance or at different distances from the buoy


10


.




The sensors


30


are electrically connected with a circuit board


11


. The circuit board


11


is mounted on the buoy


10


. The circuit board


11


is used to acquire the signals from the sensors


30


and to process the signals so that they can be transmitted to a remote monitoring station via a transmitter including an RF circuit integrated in the circuit board


11


and an antenna


13


mounted on the buoy


10


. Preferably, the circuit board


11


acquires the signals periodically, e.g., once every minute, and stay in a power-saving mode for the rest of every minute, the circuit board


11


. However, if necessary, the circuit board


11


can be actuated to acquire the signals from the sensors


30


by pressing a button (not numbered) formed on the circuit board


11


.




A solar panel


14


is mounted on the buoy


10


for converting solar energy into electric energy for powering the circuit board


11


, the antenna


13


and the sensors


30


.




Referring to

FIG. 2

, the water-monitoring apparatus includes a plate


18


secured to the buoy


10


for supporting other components (to be described) thereof. A shaft


21


is mounted on the plate


18


. A reel


20


is mounted on a middle section of the shaft


21


via a bearing


22


so that the reel


20


is allowed to rotate with respect to the shaft


21


. The reel


20


includes a cylindrical body and two flanges each formed at an end of the cylindrical body.




A coil spring


23


is connected between the shaft


21


and the reel


20


. The coil spring


23


includes a first end and a second end. The first end of the coil spring


23


is attached to the shaft


21


and the second end of the coil spring


23


is attached to the reel


20


. Thus, the coil spring


23


can exert a torque on the reel


20


. The coil spring


23


is selected so that when deformed within a certain range it provides a substantially constant torque to the reel


20


.




A tension cable


24


is wound on the reel


20


. The tension cable


24


includes an upper end and a lower end. The upper end of the tension cable


24


is tied to the reel


20


. The lower end of the tension cable


24


is tied to an anchor


29


.




In use, the buoy


10


is deployed on the water surface so that each sensor


30


is at least partly immerged in the water for detecting a quality parameter of the water. The buoy


10


is subject to the gravity, a floating force exerted by the water and a tensile force exerted by the tension cable


24


. These forces are in a balance.




The tensile force exerted by the tension cable


24


results from the torque exerted on the reel


20


by the coil spring


23


. As mentioned, when deformed within a range, the coil spring


23


exerts a substantially constant torque on the reel


20


. Thus, when the length of the tension cable


24


extending from the reel


20


changes within a range, the tension cable


24


exerts a substantially constant tensile force on the buoy


10


.




When the water level gets higher, an additional section of the tension cable


24


is released from the reel


20


, thus keeping the buoy


10


floating on the water. When the water level gets lower, a section of the tension cable


24


is wound onto the reel


20


due to the tensile force exerted on the buoy


10


by the tension cable


24


, thus avoiding the buoy from drifting. In both cases, the tension cable


24


tends to exert a substantially constant tensile force on the buoy


10


. Since the tensile force and the gravity exerted on the buoy


10


remain the same, the floating exerted on the buoy


10


remains the same, i.e., a substantially constant volume of the buoy


10


is immerged in the water. Thus, each sensor


30


is immerged in the water at a substantially constant depth.





FIGS. 3 and 4

show a water-monitoring apparatus according to a second embodiment of the present invention. In addition to the functions provided by means of the first embodiment, the second embodiment is capable of detecting a water quality parameter at a predetermined distance from a bottom of the water. To this end, a sensor


28


is located near the anchor


29


. The sensor


28


is used to detect a water quality parameter and to produce a signal representative of the water quality parameter. The tension cable


24


of the first embodiment is replaced with a tension and signal cable


26


in the second embodiment. The tension and signal cable


26


is connected with the sensor


28


at a lower end. The tension and signal cable


26


is linked via several tension cables


27


to the anchor


29


. Like the tension cable


24


, the tension and signal cable


26


is wound on the reel


20


. An upper end of the tension and signal cable


26


is inserted through a hole (not numbered) defined in one of the flanges of the reel


20


. The upper end of the tension and signal cable


26


is connected with a signal relay (to be described in detail). The signal relay is electrically connected with the antenna


13


.




The signal relay is a non-contact signal relay. The signal relay includes a circuit board


41


mounted on a flange of the reel


20


. A battery (not numbered) is installed on the circuit board


41


. A connector


42


is formed on the circuit board


41


for engagement with the upper end of the tension and signal cable


26


. Thus, the signals can be transmitted to the circuit board


41


. A light emitter


44


is also formed on the circuit board


41


. The signals are processed by means of the circuit board


41


so that they can be emitted by means of the light emitter


44


. The signals are received by means of a light receiver


48


installed on a circuit board


46


mounted on the buoy


10


. The circuit board


46


is further connected with the circuit board


11


.




The present invention has been described in relation to several embodiments. It is obvious that modifications and variations can be derived from these embodiments by those skilled in the art. For example, the circuit board


11


and the circuit board


46


can be merged into a circuit board. The embodiments are described with reference to the drawings for illustrative purposes only and are not intended to limit the scope of the present invention that can only be limited by the attached claims.



Claims
  • 1. A water-monitoring apparatus comprising:an anchor (29) for holding on to a bottom under the water; a buoy (10) for floating on the water surface; a reel (20) being mounted on the buoy (10); a tension cable (24) including a lower end tied to the anchor (29) and an upper end tied to the reel (20), the tension cable (24) being wound on the reel (20); a control device being connected with the reel (20) wherein when the water level changes, the control device rotates the reel (20), thus adjusting a length of the tension cable (24) extending from the reel (20) so that the buoy (10) always floats on the water surface; at least one sensor (30) being carried via the buoy (10) for detecting at least one environmental characteristic and for producing at least one signal representative of the at least one environmental characteristic; and a transmitter for transmitting the at least one signal to a monitoring station.
  • 2. The water-monitoring apparatus of claim 1 wherein the control device is a coil spring (23) for exerting a constant torque on the reel (20).
  • 3. The water-monitoring apparatus of claim 1 comprising a plate (18) secured to the buoy (10) and a shaft (21) mounted on the plate (18) wherein the reel (20) is mounted on the shaft (21).
  • 4. The water-monitoring apparatus of claim 3 wherein the control device is a coil spring (23) including a first end attached to the shaft (21) and a second end attached to the reel (20).
  • 5. The water-monitoring apparatus of claim 1 including a circuit board (11) electrically connected with both the at least one sensor (30) and the transmitter.
  • 6. The water-monitoring apparatus of claim 5 wherein the circuit board (11) periodically acquires the at least one signal from the at least one sensor (30) and stays in a power-saving mode for the rest of the time.
  • 7. The water-monitoring apparatus of claim 1 wherein the transmitter includes an antenna (13).
  • 8. A water-monitoring apparatus comprising:an anchor (29) for holding on to a bottom of the water; a buoy (10) for floating on the water surface; a reel (20) being mounted on the buoy (10); a tension and signal cable (26) including a lower end tied to the anchor (29) and an upper end tied to the reel (20), the tension and signal cable (26) being wound on the reel (20); a control device being connected with the reel (20) wherein when the water level changes, the control device rotates the reel (20), thus adjusting a length of the tension and signal cable (26) extending from the reel (20) so that the buoy (10) always float on the water surface; a sensor (28) being connected with the lower end of the tension and signal cable (26) for detecting an environmental characteristic and for producing a signal representative of the environmental characteristic; a signal relay being electrically connected with the upper end of the tension and signal cable (26); and a transmitter for transmitting the signal to a remote monitoring station.
  • 9. The water-monitoring apparatus of claim 8 wherein the control device is a coil spring (23) for exerting a constant torque on the reel (20).
  • 10. The water-monitoring apparatus of claim 8 comprising a plate (18) secured to the buoy (10) and a shaft (21) mounted on the plate (18) wherein the reel (20) is mounted on the shaft (21).
  • 11. The water-monitoring apparatus of claim 10 wherein the control device is a coil spring (23) including a first end attached to the shaft (21) and a second end attached to the reel (20).
  • 12. The water-monitoring apparatus of claim 8 wherein the signal relay is a non-contact signal relay.
  • 13. The water-monitoring apparatus of claim 12 wherein the non-contact signal relay comprises first and second blocks electrically connected with each other in a non-contact manner.
  • 14. The water-monitoring apparatus of claim 13 wherein the first block is electrically connected with the upper end of the tension and signal cable (26) and the second block is electrically connected with the transmitter.
  • 15. The water-monitoring apparatus of claim 14 wherein the first block includes an emitter (44) for transmitting the signal and the second block includes a receiver (48) for receiving the signal.
  • 16. The water-monitoring apparatus of claim 15 wherein the first block includes a first circuit board (41) connected with the upper end of the tension and signal cable (26), the emitter (44) being installed on the first circuit board (41).
  • 17. The water-monitoring apparatus of claim 15 wherein the second block includes a second circuit board (46) electrically connected with the transmitter, the receiver (48) being installed on the second circuit board (46) for receiving the signal.
  • 18. The water-monitoring apparatus of claim 17 wherein the emitter (44) is a light emitter and the receiver (48) is a light receiver.
  • 19. The water-monitoring apparatus of claim 16 wherein the signal relay comprises a connector (42) formed on the first circuit board (41) for electric engagement with the upper end of the tension and signal cable (26).
  • 20. A water-monitoring apparatus comprising:an anchor (29) for holding on to a bottom of the water; a buoy (10) for floating on the water surface; a reel (20) being mounted on the buoy (10); a tension and signal cable (26) including a lower end tied to the anchor (29) and an upper end tied to the reel (20), the tension and signal cable (26) being wound on the reel (20); a control device being connected with the reel (20) wherein when the water level changes, the control device rotates the reel (20), thus adjusting a length of the tension and signal cable (26) extending from the reel (20) so that the buoy (10) always float on the water surface; a shallow-water sensor (30) being carried via the buoy (10) for detecting a first environmental characteristic and for producing a first signal representative of the first environmental characteristic; a deep-water sensor (28) being connected with the lower end of the tension and signal cable (26) for detecting a second environmental characteristic and for producing a second signal representative of the second environmental characteristic; a signal relay being electrically connected with the upper end of the tension and signal cable (26); and a transmitter for transmitting the first and second signals to a remote monitoring station.
Priority Claims (1)
Number Date Country Kind
89220683 U Nov 2000 TW
US Referenced Citations (5)
Number Name Date Kind
4557608 Carver Dec 1985 A
4922226 Hsieh et al. May 1990 A
6131659 Johnson Jul 1998 A
6175809 Naville Feb 1999 B1
6185988 Baxter, Jr. Apr 2000 B1