This invention relates generally to fluid testing devices. More specifically, the system is a fluid monitoring system, such as for water, which is capable of taking multiple automated measurements of the quality of the fluid so that appropriate action can be taken to treat the fluid depending on the results of the measurements.
There is a need for testing of fluids so that they are safe for recreation or consumption. Throughout this document, water may be used as an example of a fluid that may be tested, but it should be understood that any fluid may be tested using the system and method of the present invention. For example, pools and spas need regular, if not daily testing, to ensure the quality of the water. Water quality may refer to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. Because many bodies of water are outdoors or are used by many people, water quality may change rapidly and may have undesirable results for those who enter the water if the water is unsafe or unsanitary.
Other bodies of water that are not found within a strictly controlled environment may also require regular testing. These bodies of water may include ponds, lakes, reservoirs, streams, and rivers. Whatever the nature of the body of water, there are quality standards that must be met for recreational, agriculture, wastewater, potable water, and other uses.
Given the large number of pools, spas and other bodies of water that require regular monitoring of water quality, there is an industry devoted to water testing. Unfortunately, most water testing is done manually. Manual testing is typically not performed as often as it should, and the results may be affected by many variables in the testing process. These variables may include but should not be considered as limited to temperature at time of reading, size of drop test, inability to accurately detect changes in color with the naked eye, etc.
The prior art contains various systems for water quality testing. In one example, a water monitoring device is submerged directly into the test water (i.e., the water that is being tested and monitored). In another example, the water monitoring device floats in the test water or is at least partially submerged. Additionally, another water monitoring device is externally attached to a water containment structure or to one of many different water modification systems using a fitting (e.g., a tee fitting) and/or flexible tubing.
In some examples, the water monitoring device comprises a housing, a replaceable cartridge, a testing reservoir, a driver, and a colorimeter. The device may also include a computing system, battery, and communication system such as a Bluetooth transceiver.
In some examples, the replaceable cartridge contains one or more testing strips. In one example, the testing strips are housed in a waterproof, leak-proof container. The testing strips may be wrapped around a reel within the housing. The testing strips are then partially unwound to expose a pocket.
In one example, the testing strip contains a row of pockets filled with reagents. During testing, the water monitoring device opens one or more pockets to release the reagents into the testing water. Once the chemical strip has no more reagents, the entire cartridge is replaced.
To perform a test, the water monitoring device delivers some test water into a testing reservoir and adds one or more reagents to it. To add the reagent into the testing reservoir, the strip is partially unwound to expose a pocket and dispense reagent from the exposed pocket. The test water and reagents are then mixed. A colorimeter is then used to determine the color of the mixture. The color may then be compared to a table of known values to determine the chemical levels in the test water.
Once the water-reagent mixture has been analyzed, the testing reservoir flushes the mixture from the testing reservoir and pulls more test water into the testing reservoir in preparation for the next test. Thus, the water monitoring device may automatically run a series of tests.
It is known that there are some automated systems for monitoring water quality and there are even some water monitoring systems that float in the bodies of water and are battery powered. The longer a battery can last, the longer the automated monitoring process can continue. Thus, automated systems must be made to operate in a manner that enables the least expenditure of power to perform its function. Other water testing systems require regular maintenance because of the complexity of the device. Accordingly, it would be an advantage over the prior art to reduce power consumption and complexity in an automated and battery-operated water monitoring system in order to extend the time in which water monitoring can be performed without having to replace or recharge a battery or perform maintenance.
The present invention is a system and method for automated testing, treatment, and maintenance of fluid such as water disposed in swimming pools, spas, and other bodies of water, wherein the water testing system access a fluid to be monitored by using an in-line T-segment attachment that is inserted into a pipe and that enables a water testing system to be easily attached to the in-line T-segment attachment.
In a first aspect of the invention, it should be understood that the bodies of water that may be tested may include but should not be considered as limited to aquaculture, aquariums, rivers, lakes, ponds, streams, wells, cooling towers, waste treatment systems, pools, hot tubs, etc.
In a second aspect of the invention, the water being tested must flow through a pipe to which an in-line T-segment attachment is inserted.
These and other embodiments of the present invention will become apparent to those skilled in the art from a consideration of the following detailed description taken in combination with the accompanying drawings.
Reference will now be made to the drawings in which the various embodiments of the present invention will be discussed so as to enable one skilled in the art to make and use the invention. It is to be understood that the following description illustrates embodiments of the present invention and should not be viewed as narrowing the claims which follow.
Furthermore, it is to be understood that this disclosure is not limited to the parameters of the particularly exemplified systems, methods, apparatus, products, and processes, which may, of course, vary. Thus, while certain examples of the present disclosure will be described in detail, with reference to specific configurations, parameters, components, elements, etc., the descriptions are illustrative and are not to be construed as limiting the scope of the claimed invention. In addition, the terminology used herein is for the purpose of describing the examples and is not necessarily intended to limit the scope of the claimed invention.
In addition, unless otherwise indicated, numbers expressing quantities, constituents, distances, or other measurements used in the specification and claims are to be understood as being modified by the term “about,” as that term is defined herein. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the subject matter presented herein. At the very least, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the subject matter presented herein are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The following document describes a fluid monitoring device that monitors the chemical levels of a fluid through periodic testing. The following examples are addressed to the fluid being water. However, it should be understood that any fluid may be tested using the embodiments of the invention and that the examples and claims should not be considered as limited to just water.
As just one example of the use of the fluid monitoring device, it may be used to automatically measure multiple parameters of water such as the chlorine, pH, and alkalinity levels. It should be understood that any chemical test may be performed on a fluid where the required reagent may be stored in the cartridges of the present invention. The reagent may be a substance or compound added to a system to cause a chemical reaction or added to test if a reaction occurs. The fluid monitoring device may also transfer a chemical level data to a user's phone, tablet, computer or other computing device that has access to a network via a wired or wireless connection. Additionally, the water monitoring device may send alerts to a user if any of the chemical levels are outside of a predefined range.
It is noted that the bottom cap 115 may not be needed, and thus may be replaced with a bottom plate that does not include any apertures therethrough.
In some examples, the body 110 is a cylinder that is tapered on both ends. However, the shape of the body 110 may vary to accommodate different needs and preferences. For example, in some examples, the body is a square prism, a triangular prism, or any type of regular or irregular prism. Additionally, in some examples the body is only tapered on one end or on neither end.
In some examples, the water monitoring device 100 is made of plastic. For example, the water monitoring device 100 may be made of a thermoplastic or thermoset plastic. In other examples, the water monitoring device 100 is made of a metal, such as aluminum, steel, stainless steel, or copper. In some examples, the metal is treated with a rust-resistant coating. The water monitoring device 100 may also be treated with a UV-resistant coating.
For assembly, the reagent pouches 500 may snap into place when they are inserted into slots of the reagent cartridge 505. In an example, the reagent pouches 500 may have tabs/slots (not shown) that snap into tabs/slots (not shown) on the reagent cartridge 505. The reagent pouches 500 may be removed by pulling upward on them. A user may therefore easily remove and insert the individual reagent pouches 500 within the reagent cartridge 505. In an example, the reagent pouches 500 may be coupled to a circular fluid flow path 600. Additionally, in some examples, the reagent pouches 500 are held in place by the cap 105. More specifically, the cap 105 pushes down on the reagent pouches 500 in the reagent cartridge 505 when it is inserted into the body 110.
In alternative embodiments, the entire reagent cartridge 505 may be removed from the water monitoring device 100. The reagent pouches 500 that need replacing are then removed and replaced with a new reagent pouch, or all of the reagent pouches 500 are removed as a single unit and replaced at the same time. Then, the reagent cartridge 505 is reinserted into the body 110 of the water monitoring device 100.
A mating surface with the pump valves 535 is disposed within the body 110 for receiving the reagent cartridge 500. The cartridge valves 530 and the pump valves 535 are normally closed when the reagent cartridge 500 is not inserted into the body 110. However, when the reagent cartridge 500 is inserted into the body and engages the mating surface, the cartridge valves 530 and the pump valves 535 are all opened.
More specifically, the peristaltic reagent pumps 515 are coupled to a reagent manifold 1810 that is coupled to the fluid flow tubing system 555 of the circular fluid flow path 600. The reagent manifold 1810 may include one-way valves so that backflow is prevented from going back into the reagent pouches 505.
It should be understood that the circular flow fluid path 600 describes a circular path for fluid within the fluid flow tubing system 555 that is used when a sample of water is mixed with reagents. The fluid flow tubing system 555 includes a pathway into and out of the circular flow fluid path 600 so that the combination of water and the at least one reagent can be flushed from the circular fluid flow path once mixing and measuring are performed.
When a test on water is to be performed, at least one of the peristaltic reagent pumps 515 may be activated to deliver a predetermined amount of reagent to the reagent manifold 1810. The peristaltic reagent pumps 515 may be capable of varying the amount of any reagent that is delivered because of the nature of the peristaltic pumps. That is to say, a peristaltic pump 515 may deliver small amounts of a reagent multiple times until the desired amount of a reagent is delivered.
In some examples, to run a test, a predetermined amount of test water is pulled into the circular fluid flow path 600 from a water reservoir (e.g., the test water such as a pool). The predetermined amount of test water is simply all of the water that can fit into the test chamber 1815 (see
The water-reagent mixture is then tested using a colorimeter or other sensor 725. The sensor values may be compared to a table of known values to determine the chemical levels of the test water. Other methods include mapping known values to create functions that convert raw values to chemical values, machine learning through neural networks, etc. The method for testing and monitoring water will be described in more detail below. After a test, the water-reagent mixture may be flushed from the circular fluid flow path 600 into the water reservoir.
As shown in
Additionally, in some examples, the transceiver 610 is used to send test results to a user or database. In some examples, the test result is comprised of a color value (e.g., a RGB value or a chart of wavelength absorption), a message, and/or a recommendation. The transceiver 610 may also send messages, alerts, or other type of data/information. This may be accomplished through any kind of wired or wireless connection, including, for example, Bluetooth, Wi-Fi, GPS, or other frequency transmission capability.
For example, the results may be sent to a user's phone, smartwatch, or computer. In some examples, a user may access test results through a mobile phone app. Thus, a user may easily access information about the test water. Similarly, in the first embodiment, the water monitoring device 100 may send test results or alerts to a database through a network. For example, the database may be disposed in the Cloud or other network infrastructure. Additionally, the database may receive test results from multiple water monitoring devices 100. Thus, the database may assist a person or company to monitor many test waters.
In another example, the water monitoring device 100 sends an alert to the user and/or database. For example, a user may receive a phone notification if the test water's chemical levels are outside a predetermined range. Similarly, the database may flag all the test results that fall outside of a predetermined range. The water monitoring device 100 may also send alerts through one or more indicator LEDs 630. More specifically, the water monitoring device 100 may turn on an indicator LED 630 if the test water's chemical levels are outside a predetermined range. Another form of visible signal or audio signal may also be used.
The water monitoring device 100 may also send alerts if the device is malfunctioning or needs a reagent cartridge 500 or reagent pouch 505 replacement. For example, a user may receive a notification that states “LOW REAGENT LEVELS. REPLACE CARTRIDGE SOON.” The indicator LED 630 may also alert a user of low reagent levels. For example, a yellow LED may be turned on when the reagent levels are below 30% and a red LED may be turned on when the reagent levels are below 10%.
The data instructions instruct the mixing pump 520 to mix the water and reagent in the circular fluid flow path 600 to create a water-reagent mixture. The data instructions then direct the colorimeter 720 to measure wavelength absorption of the water-reagent mixture. The data instructions also instruct the computing system 615 to determine the chemical properties of the water using the results of the colorimeter 720. After the test, the data instructions inform the driver to pump water into the circular fluid flow path 600 to flush the test chamber 1815 of the water-reagent mixture. In an example, the user may trigger a manual test chamber 1815 flush or the computer processor 705 may automatically trigger the test chamber flush after a predetermined amount of time or after the test results are received.
Additionally, in some examples, the water monitoring device 100 may be controlled wirelessly through Bluetooth, Wi-Fi, GPS, or other frequency transmission methods. For example, a user may manually start a water test through a phone or computer application. Similarly, a user may change the test schedule or change the test type. A user may control multiple water monitoring devices 100 at once. For example, a user may use a database to switch the schedules of all water monitoring devices 100 in a certain geographical area.
In some examples, the water monitoring device 100 is comprised of an indicator that is activated if the chemical properties of the water surpass a preselected threshold value. Thus, the user could be alerted if the chemical properties of the water are outside the desired range automatically.
The tee fitting 805 allows the water monitoring device 800 to be directly attached to standard-sized pipes of a water system. For example, the water monitoring device 800 may be attached to a pool's circulation line or to a pool's filtration system (e.g., a system with a filter and a circulation pump). In an example, the tee fitting 805 is used to connect the water monitoring device 800 in-line before the pool filter. In another example, the tee fitting 805 is used to connect the water monitoring device 800 in-line after the pool filter. Additionally, the size of the tee fitting may vary to accommodate different needs and preferences. For example, in some examples, the tee fitting may fit a pipe with a ¼-inch nominal inside diameter or larger.
Similarly, the flexible tube attachments 905 allow the water monitoring device 900 to be easily connected to an existing water system. Additionally, the flexible tube attachment 905 allows the intake tube and the drain tube of the water monitoring device 900 to be connected to different water systems or to different sections of the same system.
In some examples, the water monitoring device 800 does not use the tee fitting 805 or the flexible tube attachment 905. Instead, the water monitoring device floats in the test water and pulls/drains test water (e.g., by using a pump and/or gravity) directly from the bottom cap 115. For example, the bottom cap 115 may have an intake value and draining valve. It should be noted that all three attachment modules provide similar functions overall. For example, all three attachment modules (e.g., the bottom cap 115, tee fitting 805, and flexible tubes 905) pull test water from the water system to the testing reservoir.
In some examples, each of the reagent pouches 505 contains a different reagent. For example, the reagent pouch 505 may contain DPD Reagent #1 (N,N-diethyl-p-phenylenediamine), DPD Reagent #2 (Monochloramine), phenol red, thiosulfate N/10, DPD reagent #3, sulfuric acid 0.12 N, acid demand reagent, base demand reagent, hardness reagent, cyanuric acid reagent, and a calcium buffer. In an alternative embodiment, a reagent that is used more often or a reagent that requires larger quantities to be used than other reagents may be disposed in more than one reagent pouch 505.
In an example of the operation of the first embodiment of the invention,
The mixing pump 520 may also switch the flow direction. For example, in
Note that the one-way valve 1800 is not a powered valve but operates to allow the flow in one direction only.
In
When performing a mixing operation, one or more of the reagent pumps 515 pushes reagent from one of more of the reagent pouches 500 into the reagent manifold 1810. In a first embodiment, the amount of reagent that passes through the reagent pumps 515 at any one time is a small amount, thereby allowing the reagent pumps 515 to control the quantity of reagent that is entering into the reagent manifold 1810.
As one or more of the reagent pumps 515 are pumping the reagent into the reagent manifold 1810, a solenoid 540 may be closed by the computing system 615. By closing the solenoid 540, a closed water flow path of testing water may be created within the circular fluid flow path 600. This closed water flow path is created because of the nature of the peristaltic mixing pump 520.
It should be remembered that as a peristaltic pump pushes a finite quantity of fluid through it, at the same time, it is also drawing into it the exact same amount of fluid. This is important because that means that a one-way valve is not required at the drain tube 625 to prevent water from coming back into the drain tube from the water reservoir. The mixing pump 520 is pushing out a finite amount of water and therefore must also be drawing in this exact same amount of water. Thus, the peristaltic mixing pump 520 may create a “closed” circular fluid flow path 600 as indicated by the arrows 545.
The arrows 545 therefore are an indication of the circular fluid flow path 600 within the fluid flow tubing system 555. When the circular fluid flow path 600 needs to be “closed” to perform mixing and measuring of a characteristic of the fluid and reagent mixture, the solenoid 540 is closed. This action effectively isolates the circular fluid flow path 600 as defined by arrows 545.
Once mixing is complete, the computing system 615 then performs the testing of the water-reagent mixture found in the test chamber 1815 using the colorimeter 720. In some examples, the colorimeter produces one or more test result values. In some examples, the computing system then compares the test result values against a table of known values to determine the pH levels, alkalinity levels, or chlorine levels of the test water. Additionally, in some examples, the computing system uses an equation to convert the test result values into water chemical levels (i.e., the equation produces the pH levels, alkalinity levels, or chlorine levels). In some examples, the test water's chemical levels may be stored in the computing system's memory or sent to a user's phone or computer. Furthermore, in some examples, the colorimeter determines the chemical ratio or the chemical composition of the water and reagent within the test chamber 1815. In some embodiments, the colorimeter determines the chemical values of the water (e.g., pH value, alkalinity values, and chlorine values).
After testing, the test chamber 1815 is flushed to remove all the reagents from the circular fluid flow path 600. In some examples, to flush the test chamber 1815, the direction of the mixing pump 520 must be switched several times. In an example, the direction of the mixing pump 520 switches a predetermined amount of time. In another example, the mixing pump 520 continues to switch directions until the colorimeter 720 detects chemical properties below a certain threshold. To flush the test chamber 1815, the computing system 615 makes adjustments to the solenoid 540 and to the mixing pump 520 in order to flush the water-reagent mixture from the testing reservoir in preparation for a subsequent test.
The process is then repeated in
One of the main advantages of the first embodiment of the invention shown above is that the circular fluid flow path 600 requires less power to operate, is less complex, and includes fewer moving parts than the prior art. It is suggested that a substantial decrease in power requirements enables the water testing system 100 to operate far longer between recharging because less power is needed to clean the circular fluid flow path 600. The first embodiment only requires that the solenoid 540 be opened and closed, and that a single mixing pump 520 be operated to perform mixing of the water-reagent mixture as well as flushing and cleaning of the circular fluid flow path 600.
Furthermore, because of the use of fewer moving parts than systems of the prior art, the water testing system 100 is less prone to failure and thus the need for repairs or replacement may be substantially reduced.
Having described the components and operation of the first embodiment in detail, a second embodiment of the invention is also presented herein to show further improvements.
Specifically, while the first embodiment decreased the complexity of the circular fluid flow path 500, the second embodiment may be a further refinement by eliminating the one-way valve 1800 and the solenoid 540 shown in
It is also noted that by attaching each of the plurality of pump valves 535 directly to the fluid flow tubing 555, the manifold 1810 may also be eliminated.
In an example of the operation of the second embodiment of the invention,
Accordingly, the measurement of the water-reagent mixture is then taken after the mixing of the water and the reagent shown in
In a step to increase modularity of the fluid testing device and thereby simplify operation, figure shows in a block diagram the components of the fluid testing device in another embodiment of the invention.
The connection module 1004 may include such attachments as an in-line coupler to enable the water monitoring device 100 to be coupled into an existing water system. The connection module 1004 may also include an in-fluid float model, a rigid pipe in-line module, a flexible pipe in-line module, and a tabletop off-line module.
The cartridge module 1000 may not use reagent pouches but instead uses a modular and replaceable reagent cartridge 1006 that may contain all of the reagents in a single cartridge, wherein the module is divided into separate reagent compartments (slots) 1008 for the various reagents as shown in
In this alternative embodiment, the cartridge module 1000 may also be expandable. As shown in
The invention may be summarized as a method for minimizing power consumption and reducing complexity of a fluid monitoring device, said method comprising the steps of 1) providing a reagent cartridge having a plurality of reagent slots or containers, a plurality of reagent pumps, one for each of the plurality of reagent slots or containers, a fluid flow tubing coupled to the plurality of reagent pumps for receiving at least one reagent therefrom, a test chamber for receiving a mixture of a fluid and the at least one reagent, and for measuring at least one characteristic of the mixture of the fluid and the at least one reagent, and a circular fluid flow path that includes the test chamber and a peristaltic mixing pump 2) delivering a desired amount of at least one reagent from the plurality of reagent pouches to the fluid flow tubing using at least one of the plurality of reagent pumps, 3) activating the peristaltic mixing pump, 4) mixing the at least one reagent and the fluid together within the circular fluid flow path of the fluid flow tubing, 5) deactivating the peristaltic mixing pump, and 6) measuring the at least one characteristic of the mixture of the fluid and the at least one reagent in the test chamber.
In a different embodiment, a method of using the first embodiment of the invention may proceed as follows. The first embodiment is a method for minimizing power consumption and reducing the complexity of a fluid monitoring device, said method comprising the steps of: 1) providing a reagent cartridge having a plurality of reagent pouches, a plurality of reagent pumps, one for each of the plurality of reagent pouches, a manifold coupled to the plurality of reagent pumps for receiving at least one reagent therefrom, a test chamber for receiving a mixture of a fluid and the at least one reagent, and for measuring at least one characteristic of the mixture of the fluid and the at least one reagent, and a circular fluid flow path that includes in series a solenoid, the manifold, the test chamber, a one-way valve, and a peristaltic mixing pump that leads back to the solenoid, 2) delivering a desired amount of at least one reagent from the plurality of reagent pouches to the manifold using at least one of the plurality of reagent pumps, 3) inserting the at least one reagent into a fluid in the circular fluid flow path, 4) closing the solenoid, 5) activating the peristaltic mixing pump to pump toward the solenoid until the at least one reagent and the fluid are mixed together within the circular fluid flow path, 6) deactivating the peristaltic mixing pump, and 7) measuring the at least one characteristic of the mixture of the fluid and the at least one reagent in the test chamber.
The next step is to flush the mixture of the at least one reagent and the fluid from the circular fluid flow path to prepare for a new measurement. This may be accomplished by the steps of 1) opening the solenoid, reversing direction of the peristaltic mixing pump, and activating the peristaltic mixing pump until untested fluid flows in through the inlet tube until it reaches a junction between the one-way valve and the drain tube, 2) closing the solenoid, reversing direction of the peristaltic mixing pump, and activating the peristaltic mixing pump until untested fluid passes through the one-way valve, and 3) opening the solenoid, reversing direction of the peristaltic mixing pump, and activating the peristaltic mixing pump until untested fluid passes the junction between the one-way valve and the drain tube.
More specifically, the tee fitting 805 allows the water monitoring device 800 to be directly attached to standard-sized pipes of a water system. For example, the water monitoring device 800 may be attached to a pool's circulation line or to a pool's filtration system (e.g., a system with a filter and a circulation pump). In an example, the tee fitting 805 is used to connect the water monitoring device 800 in-line before the pool filter. In another example, the tee fitting 805 is used to connect the water monitoring device 800 in-line after the pool filter. In this addition to the invention, more detail is provided regarding the tee fitting 805.
When the water monitoring device 100 is to be attached to the in-line T-segment attachment 1020, the cap 1022 is easily removed.
Finally,
Pushed against each of the threaded ends 1032 is a slip connector 1034 which is then held in place by a threaded collar 1036. The slip connectors 1034 are connected to external pipes that carry water to and from the water monitoring device 100. External pipes may be coupled to the slip connectors 1034 using a friction fit or they may be cemented in place for a more permanent connection.
The access port 1046 is comprised of an opening into the cylindrical portion of the housing. The access port 1046 is always open to the water that is in the pipe 1024 (see
Internal components of the in-line T-segment attachment 1020 do not control the flow of fluid through the access port 1046, but they may be used to determine when a fluid is flowing. Fluid flow may be determined by using a magnetic paddle flow sensor 1038. Other components of the in-line T-segment attachment 1020 include a rotating port plate 1040, a bayonet plate 1042, and a plurality of screws 1044 to hold the components in place.
The magnetic paddle flow sensor 1038 operates by moving out of the way when there is a flow of fluid moving from the pipe, through the access port 1046, and into the water monitoring device 100. The magnetic paddle flow sensor 1038 seals the hole in the access port 1046 when no fluid is moving through it, and easily pops out of the way when the water monitoring device 100 takes in fluid to test.
What is important to recognize regarding the in-line T-segment attachment 1020 is that it is only one possible system for providing the desired function of inserting a device in a pipe that enables water to be diverted into an attached device. It should be understood that devices other than the water monitoring device 100 may also be coupled to the in-line T-segment attachment 1020. Furthermore, the water monitoring device may be easily removed for maintenance or replacement using the simple twist fit connection.
The in-line T-segment attachment 1020 is controlled by the attached water monitoring device 100. Thus, when water is to be sampled and tested, the water monitoring device 100 enables water to flow through the access port 1046 for testing. When testing is complete, the water monitoring device 100 then shuts off the flow of water into the water monitoring device while still enabling water to flow through the in-line T-segment attachment 1020.
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. It is the express intention of the applicant not to invoke 35 U.S.C. § 112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
Number | Date | Country | |
---|---|---|---|
63246720 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17751183 | May 2022 | US |
Child | 18321662 | US |