The invention relates to engines and particularly to a method of fueling an engine using water.
In the past many efforts have been made to utilize the benefits of steam as a source of energy for fueling engines.
Steam engines are thermodynamic machines for converting heat from steam into work and have long been recognized as a relatively efficient source of power. Such a steam engine's cycle is often known as a Rankine cycle and its main benefit is the use of steam in the expansion process of a steam engine. The detractions of steam engines are well known and will not be detailed herein.
Steam has been used in internal combustion engines to assist combustion and two examples are those described in U.S. Pat. Nos. 5,953,914 and 5,261,238.
U.S. Pat. No. 5,953,914 discloses an engine driven by steam in which the steam is created external to the engine's combustion chamber and is injected via high-pressure valves to an expansion chamber.
U.S. Pat. No. 5,261,238 discloses injecting water into an engine's cylinders immediately after combustion of the fuel/air mix. This injection of water causes the water to vaporise thereby increasing the force produced by the engine's power stroke.
An object of the invention is to provide an engine which uses water/steam as the sole means of creating power and which offers to users a useful alternative choice.
Further objects and advantages of the invention will become apparent from the following description which is given by way of example.
According to a broadest aspect of the invention there is provided a method of fueling an internal expansion engine in which super heated water/steam is used as the sole means of creating power via thermal expansion.
According to a second aspect of the invention there is provided an engine fueled solely by super heater water/steam in which the super heated water/steam is used to create power via thermal expansion, is then condensed and then recirculated in a closed circuit arrangement so as to arrive at zero consumption and zero emissions.
In particular water is super heated, at the moment of demand, in small enough quantities to satisfy an engine's immediate demand and is not supplied via a reservoir of steam.
The invention employs an electro-mechanically induced thermal expansion procedure to create an environment where small quantities of water can be conditioned by heat and pressure to the extent that minimal heat energy is needed to be expended to complete the expansion process. The residue of the expansion process is condensed, post the expansion phase, and cooled just enough to return it to a liquid state. Thus the applicant has created a steam powered engine with all the benefits of the steam expansion process but with none of the detractions.
The present invention differs from a steam assisted internal combustion engine in that the water/steam is the sole means of creating power. It is not a logical sequence of furthering the steam assisted process as the logical sequence of a steam assisted process is to burn water alone, this being achieved via hydrogen cracking techniques, combustion being the common link.
The invention requires water to be time pulse metered and delivered at very high pressure and pre-heated beyond normal vaporization temperatures. At latency, vaporization (and therefore expansion) does not occur within the delivery system because of the controlled residual pressure at which the engine according to the invention operates.
The delivery system metering device when active, forces the water into the engine cylinders via injectors preset to open when a metering pump creates a pressure rise above closing pressure. As the pressure in the engine cylinders is much less than that in the delivery system the preconditioned water rapidly expands to create work in the cylinders. The manner in which such metering can take place can be controlled via a piston pump metering system or constant pressure electromechanical gating.
Further aspects and advantages of the invention will become apparent from the following description which is given by way of example only.
The invention will now be described with reference to the accompanying drawing which shows a schematic layout of an internal expansion engine incorporating the present invention.
In the accompanying drawing is shown an example internal expansion engine generally indicated by arrow 1. The engine 1 has a drive shaft or driven shaft 2 adapted to drive a timed metering pump 3. The timed metering pump 3 incorporates at its output a one way valve 4. The output from the timed metering pump 3 is fed to an injector 5. An output pipe 6 from the one way valve 4 to the injector 5 is heated by a heating system (not shown in detail) such as a heating coil or element 7. The injector 5 feeds super heated water from the timed metering pump 3 to an expansion chamber 8. The pipe 6 has a heater 9 immediately prior to the injector 5. The heater 9 can be a glow plug or the like adapted to operate in conjunction with the output from the timed metering pump 3 so that the heater 9 only operates periodically in a synchronised manner and at the same time as the injector 5. An electronic control system 13 is incorporated and is adapted as described below to constitute an electromechanical gate system.
Expansion of the water in the expansion chamber 8 reciprocates a piston (not shown). On the piston's upstroke the expansion chamber 8 is emptied and the water is fed to a condenser 10. Condensate from the condenser 10 is fed to a reservoir 11 an output of which acts as a input fluid via tubing 12 to the timed metering pump.
The flow of the water as fluid via the timed metering pump 3, one way valve 4, injector 5, expansion chamber 8, condenser 10 and reservoir 11 constitutes a closed loop.
In use the closed circuit nature of the water flow and the use of pulsed super heated water/steam in which only a small volume is heated at any one time produces via thermal expansion at the expansion chamber an efficient source of power which produces energy which is converted by the piston's movement into rotation in the engine's shaft which can be used for a wide variety of uses. In particular the electronic control system 13 opens and closes at predetermined times the electronically operated injector 5. The system 13 automatically adjusts the timing and water input volume to suit demand.
Thus by the invention there is provided an internal expansion engine operating efficiently and with optimum output.
Where in the foregoing description particular mechanical integers are described by way of example it is envisaged that their mechanical equivalents may be substituted as if they were individually set forth herein.
A particular example of the invention has been described and it is envisaged that improvements and modifications can take place without departing from the scope of the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
515517 | Nov 2001 | NZ | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10495513 | Aug 2004 | US |
Child | 11177469 | Jul 2005 | US |