Water powered engine

Information

  • Patent Application
  • 20040261416
  • Publication Number
    20040261416
  • Date Filed
    August 16, 2004
    20 years ago
  • Date Published
    December 30, 2004
    19 years ago
Abstract
An engine which is fuelled solely by super heater water/steam in which the super heated water/steam is used to create power via thermal expansion. The water/steam is then condensed and then recirculated in a closed circuit arrangement so as to arrive at zero consumption and zero emissions.
Description


FIELD OF THE INVENTION

[0001] The invention relates to engines and particularly to a method of fuelling an engine using water.



BACKGROUND TO THE INVENTION

[0002] In the past many efforts have been made to utilise the benefits of steam as a source of energy for fuelling engines.


[0003] Steam engines are thermodynamic machines for converting heat from steam into work and have long been recognised as a relatively efficient source of power. Such a steam engine's cycle is often known as a Rankine cycle and its main benefit is the use of steam in the expansion process of a steam engine. The detractions of steam engines are well known and will not be detailed herein.


[0004] Steam has been used in internal combustion engines to assist combustion and two examples are those described in U.S. Pat. Nos. 5,953,914 and 5,261,238.


[0005] U.S. Pat. No. 5,953,914 discloses an engine driven by steam in which the steam is created external to the engine's combustion chamber and is injected via high-pressure valves to an expansion chamber.


[0006] U.S. Pat. No. 5,261,238 discloses injecting water into an engine's cylinders immediately after combustion of the fuel/air mix. This injection of water causes the water to vaporise thereby increasing the force produced by the engine's power stroke.


[0007] An object of the invention is to provide an engine which uses water/steam as the sole means of creating power and which offers to users a useful alternative choice.


[0008] Further objects and advantages of the invention will become apparent from the following description which is given by way of example.



SUMMARY OF THE INVENTION

[0009] According to a broadest aspect of the invention there is provided a method of fuelling an internal expansion engine in which super heated water/steam is used as the sole means of creating power via thermal expansion.


[0010] According to a second aspect of the invention there is provided an engine fuelled solely by super heater water/steam in which the super heated water/steam is used to create power via thermal expansion, is then condensed and then recirculated in a closed circuit arrangement so as to arrive at zero consumption and zero emissions.


[0011] In particular water is super heated, at the moment of demand, in small enough quantities to satisfy an engine's immediate demand and is not supplied via a reservoir of steam.


[0012] The invention employs an electro-mechanically induced thermal expansion procedure to create an environment where small quantities of water can be conditioned by heat and pressure to the extent that minimal heat energy is needed to be expended to complete the expansion process. The residue of the expansion process is condensed, post the expansion phase, and cooled just enough to return it to a liquid state. Thus the applicant has created a steam powered engine with all the benefits of the steam expansion process but with none of the detractions.


[0013] The present invention differs from a steam assisted internal combustion engine in that the water/steam is the sole means of creating power. It is not a logical sequence of furthering the steam assisted process as the logical sequence of a steam assisted process is to burn water alone, this being achieved via hydrogen cracking techniques, combustion being the common link.


[0014] The invention requires water to be time pulse metered and delivered at very high pressure and pre-heated beyond normal vaporisation temperatures. At latency, vaporisation (and therefore expansion) does not occur within the delivery system because of the controlled residual pressure at which the engine according to the invention operates.


[0015] The delivery system metering device when active, forces the water into the engine cylinders via injectors preset to open when a metering pump creates a pressure rise above closing pressure. As the pressure in the engine cylinders is much less than that in the delivery system the preconditioned water rapidly expands to create work in the cylinders. In each engine cylinder a further heating process takes place, via a heating element, to ensure completion of the expansion process. The manner in which such metering can take place can be controlled via a piston pump metering system or constant pressure electromechanical gating.


[0016] Further aspects and advantages of the invention will become apparent from the following description which is given by way of example only.







DESCRIPTION OF THE INVENTION

[0017] The invention will now be described with reference to the accompanying drawing which shows a schematic layout of an internal expansion engine incorporating the present invention.







DESCRIPTION OF THE PREFERRED EXAMPLE

[0018] In the accompanying drawing is shown an example internal expansion engine generally indicated by arrow 1. The engine 1 has a drive shaft or driven shaft 2 adapted to drive a timed metering pump 3. The timed metering pump 3 incorporates at its output a one way valve 4. The output from the timed metering pump 3 is fed to an injector 5. An output pipe 6 from the one way valve 4 to the injector 5 is heated by a heating system (not shown in detail) such as a heating coil or element 7. The injector 5 feeds super heated water from the timed metering pump 3 to an expansion chamber 8. The expansion chamber 8 has a heater 9. The heater 9 can be a glow plug or the like adapted to operate in conjunction with the output from the timed metering pump 3 so that the heater 9 only operates periodically in a synchronised manner and at the same time as the injector 5. An electronic control system 13 is incorporated and is adapted as described below to constitute an electromechanical gate system.


[0019] Expansion of the water in the expansion chamber 8 reciprocates a piston (not shown). On the piston's upstroke the expansion chamber 8 is emptied and the water is fed to a condensor 10. Condensate from the condensor 10 is fed to a reservoir 11 an output of which acts as a input fluid via tubing 12 to the timed metering pump.


[0020] The flow of the water as fluid via the timed metering pump 3, one way valve 4, injector 5, expansion chamber 8, condensor 10 and reservoir 11 constitutes a closed loop.


[0021] In use the closed circuit nature of the water flow and the use of pulsed super heated water/steam in which only a small volume is heated at any one time produces via thermal expansion at the expansion chamber an efficient source of power which produces energy which is converted by the piston's movement into rotation in the engine's shaft which can be used for a wide variety of uses. In particular the electronic control system 13 opens and closes at predetermined times the electronically operated injector 5. The system 13 automatically adjusts the timing and water input volume to suit demand.


[0022] Thus by the invention there is provided an internal expansion engine operating efficiently and with optimum output.


[0023] Where in the foregoing description particular mechanical integers are described by way of example it is envisaged that their mechanical equivalents may be substituted as if they were individually set forth herein.


[0024] A particular example of the invention has been described and it is envisaged that improvements and modifications can take place without departing from the scope of the attached claims.


Claims
  • 1. An internal expansion engine fuelled solely by water a small quantity of which is superheated by an expansion chamber mounted electric heating element at the moment of demand, the superheated water being used to create power via thermal expansion in the engine, the superheated water after use is condensed and recirculated in a closed circuit to arrive at zero consumption of water.
  • 2. An engine as claimed in claim 1 wherein the water is super heated, at the moment of demand, in small enough quantities to satisfy an engine's immediate demand and is not supplied via a reservoir of steam.
  • 3. An engine as claimed in claim 2 which employs electro-mechanically induced thermal expansion to create an environment where small quantities of water are conditioned by heat and pressure to the extent that minimal heat energy is needed to be expended to complete the expansion process.
  • 4. An engine as claimed in claim 3 wherein the residue of the expansion process is condensed, post the expansion phase, and cooled just enough to return it to a liquid state.
  • 5. An engine as claimed in claim 1 wherein the engine is an internal combustion engine in which water/steam is the sole means of creating power.
  • 6. An engine as claimed in claim 1 wherein the water is time pulsed, metered and delivered at very high pressure and pre-heated beyond normal vaporisation temperatures.
  • 7. An engine as claimed in claim 6 wherein the residual pressure of the water/steam is controlled so that latency, vaporisation (and therefore expansion) does not occur within the delivery system.
  • 8. An engine as claimed in claim 6 wherein the delivery system metering device when active, forces the water into the engine cylinders via injectors preset to open when a metering pump creates a pressure rise above closing pressure.
  • 9. An engine as claimed in claim 8 wherein the pressure in the engine cylinders is much less than that in the delivery system so that the preconditioned water rapidly expands to create work in the cylinders.
  • 10. An engine as claimed in claim 9 in which in each engine cylinder a further heating process takes place, via a heating element, to ensure completion of the expansion process.
  • 11. An engine as claimed in claim 9 wherein the metering is controlled via a piston pump metering system or constant pressure electromechanical gating mechanism.
  • 12. An engine as claimed in claim 1 and substantially as herein described with reference to the accompanying drawing.
Priority Claims (1)
Number Date Country Kind
515517 Nov 2001 NZ
PCT Information
Filing Document Filing Date Country Kind
PCT/NZ02/00250 11/14/2002 WO