This invention relates generally to the field of pumps and, more specifically, is directed to a water pump that is easy to construct and may be built from inexpensive and commonly available materials.
Farmers in developing nations and other impoverished areas often lack the financial resources to invest in technologies that simplify the farming process and make it more profitable. In particular, many such farmers do not have access to inexpensive yet effective irrigation and water pumping technologies.
One pump intended to address this issue is a foot-powered pump called the MoneyMaker manufactured by KickStart Technologies. This pump, however, requires users to employ a relatively taxing “step climber” motion to pump water in which the user stands and alternately presses down on a pair of pedals. Additionally, because the pump is made primarily of machined metal parts, it is relatively expensive and cannot be manufactured by farmers themselves. Also, since the pump is not manufactured from parts that are easily replicable or available to farmers, it is relatively difficult and expensive to repair the pump in the event of a malfunction or to replace worn out parts.
Accordingly, there continues to exist a need for an inexpensive water pump that is easy to construct form materials commonly available even in impoverished areas of the world.
The present invention addresses the above need and provides an easy to construct water pump that may be constructed from inexpensive materials available even in impoverished areas. The pump uses a simple rocking motion to draw and pump water that can be performed by almost any person from child to senior and can pump significant amounts of water per unit time from a given source. It can also make water available from sources that otherwise could not be reached because, e.g., of their depth below the ground surface.
In a preferred embodiment, the pump comprises three concrete chambers, a pumping platform adapted to rock in a see-saw fashion, and a plurality of valves to control the flow of water. The first two chambers contain diaphragms that, as a result of rocking the pumping platform, draw liquid into the chambers and force liquid from those chambers into the third chamber. Two valves selectively permit liquid to be drawn into the first and second chambers, and prevent the liquid from exiting the chambers and returning to the source. Third and fourth valves allow liquid to flow from the first and second chambers into the third chamber, and prevent the liquid in the third chamber from flowing back into the first or second chambers.
A preferred embodiment of a pump constructed in accordance with the present invention is shown in
The floor of each cavity 202-206 comprises two openings (208-210 in cavity 202; 212-214 in cavity 204; and 216-218 in cavity 206) each of which connects to a channel formed within base 102 and lined with PVC pipe, as described in more detail below. The shoulders of cavities 202-206 have embedded therein a plurality of securing bolts 220 with their threaded ends extending upward.
Returning to
Pump 100 further comprises a pumping platform 114 having a pivot 116 adapted to engage a depression in a fulcrum 104. Pumping platform 114 is connected to diaphragm assemblies 112 by driving rods 118-120 secured by washers and nuts. Driving rods 118-120 may be bolts having a length of approximately 10-11 inches and a bolt size or diameter of approximately ⅜ inches or 10 millimeters. A handle 130 attached to the base 102 by a bracket 132 may be provided to help a user maintain his or her balance while standing on the pumping platform.
Also shown in
Hose 124 is attached at one end to an outlet 128 in the top of cylinder 110. Water (or other liquid) pumped by pump 100 is delivered to hose 124 via outlet 128 and may then be further carried through hose 124 to any desired location within the hose's reach to provide water for drinking, irrigation, or any other purpose.
As noted, a plurality of channels that connect to openings 208-218 of cavities 202-206 are formed in base 102. More specifically, as best shown in
A second channel 224 connects opening 210 of cavity 202 to opening 218 of cavity 206. A third channel 226, connects opening 214 of cavity 204 to opening 216 of cavity 206. Each channel may be lined with PVC pipe or other suitable pipe material. The PVC or other pipe may have a diameter of approximately 1¼ inches. The height of the foundation of base 102 is preferably sufficient to permit the pipe that lines channels 222-226 to be fully embedded within base 102 so as to avoid the potential for puncturing or other damage to the pipe.
As further shown in
By contrast, valve assembly 232 comprises a full-circle rubber flap 238 secured to the floor of its respective cavity 206 by bolts 240 embedded in base 102 and running through holes in rubber flap 238, and fastened respectively by a washer and nut. Rubber flap 238 is positioned so that a first portion of the flap covers opening 216 of cavity 206, and a second portion of the flap covers opening 218 of cavity 206.
Each diaphragm assembly 112 also comprises a seal 512 and preferably two such seals. Each seal 512 may be a round ring of rubber having a width approximately the same as that of the shoulders of cavities 202, 204 and a plurality of perimeter holes spaced so as to interact with securing bolts 220. When assembled, securing bolts 220 pass through seals 512, rubber diaphragm 504, and a cylinder 106, 108 and fastened with washers and nuts.
In operation, a user stands on platform 114 and rocks from side to side causing driving rods 118, 120 to alternately raise and lower diaphragm assemblies 112 in cavities 202, 204. During the period that driving rod 118 is raising the diaphragm assembly of cavity 202, a vacuum is created within the cavity beneath the diaphragm thus causing water to be drawn through inlet 126 and channel 222. This causes the flap of valve assembly 234 to lift permitting the drawn water into the cavity.
While driving rod 118 is being raised, driving rod 120 is simultaneously being lowered, thus depressing diaphragm assembly 112 of cavity 204. During the period that diaphragm assembly 112 is being lowered by driving rod 120, valve assembly 234 is forced closed and seals opening 212, and water in the cavity is forced through channel 226. Pressure from this water causes one flap of valve assembly 238 to open, exposing opening 216 and forcing water from channel 226 into cavity 206.
Conversely, during the period that driving rod 120 is raising diaphragm assembly 112 of cavity 204, a vacuum is created within the cavity beneath the diaphragm thus causing water to be drawn through inlet 126 and channel 222. The pressure from this water flow lifts the flap of valve assembly 234 permitting the drawn water into cavity 204.
While driving rod 120 is being raised, driving rod 118 is simultaneously lowered, thus depressing diaphragm assembly 112 of cavity 202. During the period that diaphragm assembly 112 is being lowered by driving rod 118, valve assembly 234 is forced closed and seals opening 208, and water in the cavity is forced through channel 224. Pressure from this water causes a flap of valve assembly 238 to open, exposing opening 218 and forcing water from channel 224 into cavity 206.
As the process continues and more water is forced into cavity 206 than it can hold, the water collecting in cavity 206 is forced out the top of cylinder 110 through outlet 128 and into hose 124. As will be recognized, water may not exit through outlet 140 immediately when the user begins rocking on platform 118 because it may take several cycles of operation to prime the pump and draw enough water to fill cavity 206.
In a preferred embodiment, pump 100 is constructed completely or as completely as possible from easily available materials and does not require any machining or metal working in its construction. In particular, base 102 of pump 100 may be formed of molded concrete. Channels 222-226 may be created by placing PVC pipe of an appropriate diameter within the mold. The pipe is preferably secured while the concrete is set because it will otherwise float to the surface of the concrete during setting. In one preferred embodiment, the pipe may be secured by placing a wooden frame on top of the mold with wood screws pointing down out of the bottom of the frame and positioned to hold down the pipe while the concrete is setting. Bolts 220, 236, 240 are also secured within the mold such that they will be embedded in base 102 when the concrete poured into the mold hardens. In an alternative embodiment, the base of the pump may be formed from PVC or other suitable material, as shown in
Cylinders 106-110 may similarly be created from molded concrete using an appropriate mold. Hollow rods may be placed in the mold to form the passages through the cylinders through which securing bolts 220 and driving rods 118, 120 will pass. Alternatively, cylinders 106-110 may be formed of PVC material, as shown in
It should be noted that although
Diaphragm 504, seals 512, and valve flaps 234, 238 may all be constructed from rubber material and preferably from the inner tubes of tires, a commonly available source of rubber in many underdeveloped areas of the world. PVC pipe and the various bolts, washers, nuts, rectangular brackets, and circular disks used to construct pump 100 are all common hardware items typically available even in underdeveloped areas. Platform 114 may be constructed from any type of available wood.
An alternative embodiment of the present invention is shown in
As shown in
Although the present disclosure has been described in relation to particular embodiments, many other variations, modifications, and other use of the present invention will be apparent to those skilled in the art. Accordingly, the scope of the present invention should be limited not by the specific disclosure herein, but only by the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/61122 | 10/19/2009 | WO | 00 | 4/2/2012 |