The present invention generally relates to a water pump, and more particularly to a water pump module.
Generally speaking, water pumps are used to increase the output pressure of a liquid to drive and transport the liquid. In addition, a traditional water pump uses a motor to drive a rotor, so that the pressure of water flow is increased when it passes through the rotor at a high speed of rotation and flows out along an outer edge of the blade under the action of centrifugal force. However, presently, the pressure of water flow increased by a single pump is limited. Thus, multiple pumps are often connected in series to achieve the required pump head or pressure when in use.
Moreover, pumps connected in series have been used for heat exchange modules of cooling systems. For example, U.S. Pat. No. 1,602,994 published in Taiwan, in which a first rotor chamber and a second rotor chamber are formed in a pump body. The first rotor chamber has a first outlet; the second rotor chamber has a second inlet; and a connection conduit is communicated between the first outlet and the second inlet. The first rotor is pivoted in the first rotor chamber, and the second rotor is pivoted in the second rotor chamber; therefore, the first rotor and the second rotor are disposed in series.
However, in the above U.S. Pat. No. 1,602,994, the working fluid must first enter the water collection chamber from the water inlet before flowing into the first rotor chamber. Through the connection conduit communicating with the second rotor chamber, the working fluid entering the second rotor chamber flows into a discharging chamber and finally flows out through the discharging hole. In the structure of above pumps in series, the path of the working fluid is long and has a large impedance of water. Thus, the working efficiency of the pumps in series is poor. Furthermore, as the two water pumps are arranged horizontally, the pumps in series have to occupy a larger area which may cause inconvenience.
In view of the above drawbacks, the Inventor proposes the present invention based on his expert knowledge and elaborate research in order to solve the problems of prior art.
Accordingly, an object of the present invention is to provide a water pump module for enhancing pump head and redundant functions, so that a water pump module with high performance is achieved.
Accordingly, another object of the present invention is to provide a water pump module to lower the impedance of water and reduce materials to simplify the manufacturing process, and the space utilization will be improved to reduce costs.
In order to achieve the object mentioned above, the present invention provides a water pump module including a pump body, a first pump and a second pump. The pump body includes a housing, a first chamber and a second chamber separated and communicated by the housing, an input pipe communicated with the first chamber and an output pipe communicated with the second chamber. The input pipe has a water outlet, and the water outlet is located on an inner wall of the first chamber. The output pipe has a water inlet, and the water inlet is located on an inner wall of the second chamber. The first pump has a first rotor, and the first rotor is placed in the first chamber. The second pump has a second rotor, and the second rotor is placed in the second chamber, wherein an extension line of a rotating shaft of the second rotor is perpendicular to a plane where a rotating shaft of the first rotor is located.
In order to achieve the object mentioned above, the present invention provides a water pump module including a pump body, a first pump and a second pump. The pump body includes a housing, a first chamber and a second chamber separated and communicated by the housing, an input pipe communicated with the first chamber, an output pipe communicated with the second chamber and a connection conduit located between the first chamber and the second chamber, wherein a first opening of the connection conduit is connected to the first chamber and a second opening of the connection conduit is connected to the second chamber, and a conduit main axis of the connection conduit passes through the first opening and the second opening. The first pump has a first rotor, and the first rotor is placed in the first chamber. The second pump has a second rotor, and the second rotor is placed in the second chamber.
In order to achieve the object mentioned above, the present invention provides a water pump module including a pump body, a first pump and a second pump. The pump body includes a housing, a first chamber and a second chamber separated and communicated by the housing, an input pipe communicated with the first chamber, an output pipe communicated with the second chamber and a connection conduit communicated with the first chamber and the second chamber, wherein a first opening of the connection conduit is connected to the first chamber and a second opening of the connection conduit is connected to the second chamber, and a partial of first chamber projection overlaps with a partial of second chamber projection. The first pump includes a first rotor placed in the first chamber, and the first rotor is disposed on a first shaft column axially. The second pump includes a second rotor placed in the second chamber, and the second rotor is disposed on a second shaft column axially.
Compared to the prior art, the water pump body of the water pump module of the present invention provides a first chamber and a second chamber in communication; additionally, the water outlet is arranged on the inner wall of the first chamber, and the water inlet is located on the inner wall of the second chamber. The first water pump and the second water pump are installed in the first chamber and the second chamber respectively to complete the connections of pipeline and pumps in series. Moreover, the first and the second water pumps of the present invention share an input pipe and an output pipe; therefore, the two water pumps do not need to dispose a water inlet and outlet separately. Thereby, the processes of cleaning, sealing, and installing of pipeline can be reduced. In addition, the water pump module of the present invention can further eliminate processes of disposing, connecting, and fixing of pipe clamps. Furthermore, since the input pipe connects the water chamber directly for shortening the flow path and simplifying structures, the impedance of water when the pipeline is connected or bent can be reduced. As a result, the water pressure and pump head can be increased to have advantages of standby (redundant), material reduction and cost reduction etc., and the practice of the present invention is enhanced.
The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself, however, may be best understood by reference to the following detailed description of the invention, which describes a number of exemplary embodiments of the invention, taken in conjunction with the accompanying drawings, in which:
In cooperation with attached drawings, the technical contents and detailed description of the invention are described thereinafter according to a number of preferable embodiments, not being used to limit its executing scope. Any equivalent variation or modification made according to appended claims is all covered by the claims claimed by the present invention.
Please refer to
Please further refer to
Specifically, a rotating shaft 311 of the second rotor 31 has an extension line 310. The extension line 310 is perpendicular to a rotating shaft 211 of the first rotor 21. Preferably, the extension line 310 of the second rotor 31 is perpendicular to the rotating shaft 211 of the first rotor 21 without intersecting. Similarly, a rotating shaft 211 of the first rotor 21 has an extension line 210. The extension line 210 is perpendicular to a rotating shaft 311 of the second rotor 31. In the present embodiment, an axis plane 200 where the rotating shaft 211 of the first rotor 21 located is parallel to a top plane 301 of the second rotor 31. The extension line 310 of the second rotor 31 is substantially perpendicular to the axis plane 200 rather than directly intersecting the rotating shaft 211 of the first rotor 21.
The first casing 22 and the housing 13 are combined to constitute the first chamber 14. In addition, the second casing 32 and the housing 13 are combined to constitute the second chamber 15. The first chamber 14 and the second chamber 15 are disposed at two sides of the housing 13 and are separated and communicated by the housing 13. The first chamber 14 and the second chamber 15 are separated with each other. Furthermore, the water outlet 110 of the input pipe 11 is communicated with the first chamber 14, and the water inlet 120 of the output pipe 12 is communicated with the second chamber 15.
Moreover, after the first pump 20 is assembled with the water pump body 10, the first rotor 21 is placed in the first chamber 14. After the second pump 30 is assembled with the water pump body 10, the second rotor 31 is placed in the second chamber 15.
In more detail, as shown in
Furthermore, as shown in
Please refer to
Moreover, as shown in
The first opening 161 (inlet) of the connection conduit 16 is connected to the first chamber 14, and the second opening 162 (outlet) of another end of the connection conduit 16 is connected to the second chamber 15. In addition, the conduit main axis of the connection conduit 16 passes through the first opening 161 and second opening 162. It is worth noticing that, the conduit main axis of the connection conduit 16 is formed by a link of a center of each cross section in the extension direction of the connection conduit 16, wherein the conduit main axis is preferably extended linearly.
More specifically, the first opening 161 of the connection conduit 16 faces away from the rotating shaft 211 of the first rotor 21, and the second opening 162 of the connection conduit 16 is adjacent to the rotating shaft 311 of the second rotor 31. Furthermore, the water inlet 120 faces away from the rotating shaft 311 of the second rotor 31. Although the output pipe 12 and the input pipe 11 are extended from the same side of the pump body 10, they are not limited thereto. The output pipe 12 and the input pipe 11 can be extended and protruded from different sides of the pump body 10 if needed. In addition, the input pipe 11 or the output pipe 12 can be flat pipes.
Please refer to
Please further refer to
Please refer to
The first casing 22b and the housing 13b are combined to constitute the first chamber 14b. In addition, the second casing 32b and the housing 13b are combined to constitute the second chamber 15b. The first chamber 14b and the second chamber 15b are located at two sides of the housing 13b and are separated and communicated by the housing 13b. Moreover, a water outlet 110b of the input pipe 12b is communicated with the first chamber 14b, and a water inlet 120b of output pipe 12b is communicated with the second chamber 15b.
Furthermore, after the first water pump 20b is assembled with the water pump body 10b, the first rotor 21b is placed in the first chamber 14b. After the second water pump 30b is assembled with the water pump body 10b, the second rotor 31b is placed in the second chamber 15b. The housing 13b is formed with a connection conduit 16b communicated with the first chamber 14b and the second chamber 15b.
As shown in
Moreover, as shown in
As shown in
Please further refer to
Although the present invention has been described with reference to the preferred embodiment thereof, it will be understood that the invention is not limited to the details thereof. Various substitutions and improvements have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and improvements are intended to be embraced within the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202010516700.1 | Jun 2020 | CN | national |
Number | Date | Country | |
---|---|---|---|
62878576 | Jul 2019 | US |