Claims
- 1. A water purifying apparatus comprising:
a case; a glass container, in which negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are contained, provided at an end portion of the case; and a driving unit for causing the glass container to vibrate.
- 2. The water purifying apparatus according to claim 1, wherein the glass container is of one of a cylindrical shape and a substantially conical shape, with an end thereof formed in one of a conical, curved, plain and spherical shapes.
- 3. The water purifying apparatus according to claim 2, further comprising a cylindrical metal member for coating an outer circumferential surface of the glass container.
- 4. The water purifying apparatus according to claim 2, further comprising a plurality of types of metal plates for coating an outer circumferential surface of the glass container, aligned in a circumferential direction of said glass container.
- 5. The water purifying apparatus according to claim 1, further comprising a cylindrical metal member for coating an outer circumferential surface of the glass container.
- 6. The water purifying apparatus according to claim 1, further comprising a plurality of types of metal plates for coating an outer circumferential surface of the glass container, aligned in a circumferential direction of said glass container.
- 7. The water purifying apparatus according to claim 1, further comprising in the glass container a glass container smaller than said glass container, in which the negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are contained.
- 8. The water purifying apparatus according to claim 1, wherein the negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are produced by:
a first step of leaving grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe at rest in a place where a static electricity reducing/eliminating apparatus including a glass container, in which negatively charged grains of at least one of Si and SiOx (0<x≦2) are contained, is buried underground; and a second step of sintering the grains of said material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe processed by the first step, for a predetermined time in the same place as the first step.
- 9. The water purifying apparatus according to claim 1, wherein the negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are produced by:
a first step of introducing grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe into a negatively charged quartz crucible; and a second step of sintering the grains of said material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe processed by the first step, for a predetermined time in a place where a static electricity reducing/eliminating apparatus including a glass container, in which negatively charged grains of at least one of Si and SiOx (0<x≦2) are contained, is buried underground.
- 10. The water purifying apparatus according to claim 1, wherein the negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are produced by a process of leaving grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe at rest in a place where a static electricity reducing/eliminating apparatus including a glass container, in which negatively charged grains of at least one of Si and SiOx (0<x≦2) are contained, is buried underground.
- 11. A water purifying apparatus comprising:
a case; a glass container, in which negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are contained, provided at an end portion of the case; and a driving unit for causing the glass container to rotate on an axis thereof.
- 12. The water purifying apparatus according to claim 11, wherein the glass container is of one of a cylindrical shape and a substantially conical shape, with an end thereof formed in one of a conical, curved, plain and spherical shapes.
- 13. The water purifying apparatus according to claim 12, further comprising a cylindrical metal member for coating an outer circumferential surface of the glass container.
- 14. The water purifying apparatus according to claim 12, further comprising a plurality of types of metal plates for coating an outer circumferential surface of the glass container, aligned in a circumferential direction of said glass container.
- 15. The water purifying apparatus according to claim 11, further comprising a cylindrical metal member for coating an outer circumferential surface of the glass container.
- 16. The water purifying apparatus according to claim 11, further comprising a plurality of types of metal plates for coating an outer circumferential surface of the glass container, aligned in a circumferential direction of said glass container.
- 17. The water purifying apparatus according to claim 11, further comprising in the glass container a glass container smaller than said glass container, in which the negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are contained.
- 18. The water purifying apparatus according to claim 11, wherein the negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are produced by:
a first step of leaving grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe at rest in a place where a static electricity reducing/eliminating apparatus including a glass container, in which negatively charged grains of at least one of Si and SiOx (0<x≦2) are contained, is buried underground; and a second step of sintering the grains of said material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe processed by the first step, for a predetermined time in the same place as the first step.
- 19. The water purifying apparatus according to claim 11, wherein the negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are produced by:
a first step of introducing grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe into a negatively charged quartz crucible; and a second step of sintering the grains of said material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe processed by the first step, for a predetermined time in a place where a static electricity reducing/eliminating apparatus including a glass container, in which negatively charged grains of at least one of Si and SiOx (0<x≦2) are contained, is buried underground.
- 20. The water purifying apparatus according to claim 11, wherein said negatively charged grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe are produced by a process of leaving grains of material selected from the group consisting of Si, SiOx (0<x≦2), minerals, Al, P, Ge, Sn, Pb, Ni and Fe at rest in a place where a static electricity reducing/eliminating apparatus including a glass container, in which negatively charged grains of at least one of Si and SiOx (0<x≦2) are contained, is buried underground.
Priority Claims (2)
Number |
Date |
Country |
Kind |
2002-113890 |
Apr 2002 |
JP |
|
2003-105813 |
Apr 2003 |
JP |
|
Parent Case Info
[0001] This is a continuation-in-part of U.S. patent application Ser. No. 10/233,144, filed Aug. 30, 2002.
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
10233144 |
Aug 2002 |
US |
Child |
10646366 |
Aug 2003 |
US |