In many water rocket systems the rocket has to be filled with water before placing it on the launch mechanism, or be filled by being connected to a municipal or well water system after being placed on the launch system. These techniques of filling water rockets are inefficient, time consuming, and can limit the launch area by the length of hose used to transfer water from a water system. The advantage of this water-rocket water-transfer-station is that it can be taken to remote locations where municipal or other sources of water supply are unavailable. Using an air pump connected to the launcher, and the launcher connected to the water station by a small hose, the water station is pressurized with air through the launcher. Once the water station has been pressurized with air, the pressurized air can be used to force water from the water station, back through the hose, through the launcher, and into the water rocket before final rocket pressurization and subsequent launch.
In one embodiment, a water station is comprised of a specialized manifold, with appropriate mating thread, and a sealing washer to provide a water-tight seal with a carbonated drink bottle. The specialized manifold has a port and an attached small hose to connect with a specialized launcher. The water station is pressurized through the small hose via an air supply connected to the specialized launcher. The specialized manifold of the water station may also be equipped with a Schrader valve for independent pressurization when disconnected from the specialized launcher. Water and pressure are retained in the disconnected water station by an automatic shutoff valve in the end of the small hose. For safety, and for manual depressurization, a pressure relief valve with a pull-ring may be provided with the specialized manifold. When combined with a plastic carbonated drink bottle, the specialized manifold is used as a water supply reservoir to fill water rockets. By connecting an air supply to the specialized launcher, and by connecting to the specialized launcher to the water station by a small air tube, air pressure can be transferred from the assembled rocket and launcher into the water station reservoir bottle. Once the desired pressure in the water station is reached, an air/water control valve is closed isolating the launcher from the water station, then air pressure is released from the rocket using a pressure relief valve with a pull-ring. The air/water control valve can now be opened and water can be metered into the rocket, forced by the air pressure in the water station. When the desired amount of water is reached in the rocket, the air/water control valve is closed and the rocket is ready to be pressurized and launched. If desired, as in the case of an overfill, water in the rocket can be transferred back to the water station reservoir bottle by pumping a higher pressure into the rocket via the air tube and opening the air/water control valve to transfer water back into the water station reservoir. Once the water has transferred back into the water station the air/water control valve is then closed. If desired, pressure in the rocket can be relieved using a separate air valve such as a pressure relief valve with a pull-ring.
In the accompanying drawings the water station is shown as a specialized manifold and plastic carbonated drink bottle connected to a water rocket launch system via an air/water transfer hose.