The present disclosure generally relates to the transport of liquid, such as water, from the cabinet of a refrigerator or other appliance to a door of that refrigerator or other appliance when the door opens relative to the cabinet in a non-circular manner, such that the use of common tubing to transport the liquid is impractical.
In a refrigerator or other appliance having a door mounted dispensing apparatus for liquid (such as water) and/or ice, there is a need to transfer the liquid from the cabinet to the door. In some instances, liquid is transferred to the door from the cabinet in a number of ways, such as tubing through the hinge, through the edge of the door, or adjacent to the hinge. However, the use of articulated hinges which permit the door to open in a non-circular path that pushes the door away from the cabinet makes these traditional tubing options ineffective or less desirable. Therefore, a need has been identified in the art to provide a means for routing liquid from a cabinet to a door mounted dispenser when the door opens in a non-circular path.
One aspect of this disclosure is a refrigerator that comprises: a cabinet; a door operably connected to the cabinet, the door having a closed position relative to the cabinet and an opened position relative to the cabinet, and the door transitions from the closed position to the opened position in a non-circular path; a liquid outlet disposed at the cabinet; and a liquid receiver disposed at the door, the liquid receiver configured to receive liquid exiting the liquid outlet when the door is in the closed position but not in the opened position. The cabinet can include a fresh food compartment. The door can allow access into the fresh food compartment when the door is in the opened position. The liquid outlet can be disposed within the fresh food compartment. The door can include a liquid dispenser in communication with the liquid receiver. The liquid dispenser can be configured to dispense liquid from the door while the door is in the closed position. The liquid receiver can be disposed vertically below the liquid outlet of the cabinet when the door is in the closed position. The door can further include a gasket adjacent to the liquid receiver. The cabinet can further include a gasket adjacent to the liquid outlet. When the door is in the closed position, the gasket of the door can cooperate with the gasket of the cabinet to form a sealed channel extending through both the gasket of the cabinet and the gasket of the door. As the door transitions from the closed position to the opened position, the gasket of the door can slide against the gasket of the cabinet. The cabinet can further include a tank that stores liquid received from a source external to the refrigerator. The liquid outlet can be in communication with the tank via tubing. A false wall can cover at least a portion of the tubing adjacent the liquid outlet. The cabinet can further include a freezer compartment, an ice maker in the freezer compartment, and a valve that selectively diverts liquid received from the source external to the refrigerator to either the tank or the ice maker in the freezer compartment. The cabinet can further include at least one one-way valve between the tank and the liquid outlet, the one-way valve permitting flow only toward the liquid outlet from the tank. The door can include a pump in communication with the liquid receiver. The liquid receiver can include a reservoir that collects liquid expelled from the liquid outlet of the cabinet. The pump can cause the transport of the liquid collected in the reservoir. The door can include a filter in communication with the liquid receiver that filters the liquid that the liquid receiver receives from the liquid outlet of the cabinet. The door can further include a liquid dispenser that dispenses liquid filtered by the filter. The door can further include an ice maker that makes ice from liquid filtered by the filter. The door can further include a valve disposed in liquid communication between the filter and both the ice maker and the liquid dispenser that selectively diverts liquid to either the ice maker or the liquid dispenser. The refrigerator can further include one or more articulated hinges that operably connect the door to the cabinet and that move the door away from the cabinet when the door transitions from the closed position to the opened position.
Another aspect of this disclosure is a refrigerator comprising: a cabinet including a liquid outlet configured to eject liquid and a gasket cooperating with the liquid outlet; and a door connected to the cabinet via one or more articulated hinges that move the door away from the cabinet when the door transitions from a closed position to an opened position relative to the cabinet, the door including: a liquid receiver configured to receive liquid ejected from the liquid outlet when the door is in the closed position but not in the opened position; a gasket cooperating with the liquid receiver; and a liquid dispenser in communication with the liquid receiver and configured to dispense liquid received from the liquid receiver; wherein, when the door is in the closed position, the gasket of the door cooperates with the gasket of the cabinet to form a sealed channel extending through both the gasket of the door and the gasket of the cabinet. The liquid receiver can be disposed vertically below the liquid outlet, when the door is in the closed position. The gasket cooperating with the liquid receiver can be disposed vertically below the gasket cooperating with the liquid outlet, when the door is in the closed position. As the door transitions from the closed position to the opened position, the gasket of the door can slide against the gasket of the cabinet and the sealed channel loses form. The door can further include a pump in communication with the liquid receiver, and the pump can be configured to pump liquid received by the liquid receiver to and through the liquid dispenser.
Another aspect of this disclosure is a refrigerator that comprises: a cabinet including a liquid outlet configured to eject liquid and a gasket cooperating with the liquid outlet; and a door connected to the cabinet via one or more articulated hinges that move the door away from the cabinet when the door transitions from a closed position to an opened position relative to the cabinet. The door includes: a liquid receiver configured to receive liquid ejected from the liquid outlet when the door is in the closed position but not in the opened position; gasket cooperating with the liquid receiver; a filter in fluid communication with the liquid receiver configured to filter the liquid received by the liquid receiver; a liquid dispenser in fluid communication with the filter and configured to dispense liquid filtered by the filter; an ice maker in fluid communication with the filter and configured to make ice from liquid filtered by the filter; and a valve disposed in fluid communication between the filter and both the ice maker and the liquid dispenser configured to selectively divert liquid to either the ice maker or the liquid dispenser. When the door is in the closed position, the gasket of the door cooperates with the gasket of the cabinet to form a sealed channel extending through both the gasket of the door and the gasket of the cabinet.
Another aspect of this disclosure is a refrigerator comprising: a cabinet; a door operably connected to the cabinet, the door having a closed position relative to the cabinet and an opened position relative to the cabinet; and a liquid line to transport liquid from the cabinet to the door, the liquid line including a door portion disposed at the door and a cabinet portion disposed at the cabinet; wherein, the liquid line is stretchable from a relaxed state to a stretched state, the liquid line is in the relaxed state when the door is in the closed position, the liquid line is in the stretched state when the door is in the opened position, and the liquid line is longer in stretched state than in the relaxed state. The liquid line can be at least twice as long in the stretched state than the liquid line is in the relaxed state. The liquid line can transform from the relaxed state into the stretched state as the door moves from the closed position to the opened position. The liquid line can transform from the stretched state into the relaxed state as the door moves from the opened position to the closed position. The cabinet can include a fresh food compartment. The door can allow access into the fresh food compartment when the door is in the opened position. The cabinet portion of the liquid line can be disposed within the fresh food compartment. The door can include a liquid dispenser in communication with the liquid line. The liquid dispenser can be configured to dispense liquid from the door while the door is in the closed position. The cabinet portion of the liquid line can be at the same level as the door portion. When the door is in the closed position, the liquid line can be disposed in a linear path between the cabinet portion and the door portion. The cabinet can further including a tank that stores liquid received from a source external to the refrigerator. The liquid line can be in communication with the tank. A false wall can cover at least a portion of the cabinet portion of the liquid line. The cabinet can further include a freezer compartment, an ice maker in the freezer compartment, and a valve that selectively diverts liquid received from the source external to the refrigerator to either the tank or the ice maker in the freezer compartment. The cabinet can further include a one-way valve between the tank and the liquid line between the door and the cabinet. The one-way valve can permit liquid flow only toward the liquid line from the tank. The door can include a filter in communication with the liquid line that filters the liquid that the liquid line transports to the door. The door can further include a liquid dispenser that dispenses liquid filtered by the filter. The door further can further include an ice maker that makes ice from liquid filtered by the filter. A valve can be disposed in communication between the filter and both the ice maker and the liquid dispenser that selectively diverts liquid to either the ice maker or the liquid dispenser. One or more articulated hinges can operably connect the door to the cabinet and move the door away from the cabinet when the door transitions from the closed position to the opened position.
Another aspect of this disclosure is a refrigeration comprising: a cabinet; a door operably connected to the cabinet, the door having a closed position relative to the cabinet and an opened position relative to the cabinet; a liquid line to transport liquid from the cabinet to the door; and a retractor operably coupled to the liquid line that releases a released portion of the liquid line when the door moves from the closed position to the opened position and retracts the released portion of the liquid line when the door moves from the opened position to the closed position, the liquid line having an exposed portion between the door and the retractor when the door is in the closed position. The released portion of the liquid line that is released from the retractor when the door moves from the closed position to the opened position can be at least twice as long as the exposed portion of the liquid line when the door is in the closed position. The cabinet can include a fresh food compartment. The door can allow access into the fresh food compartment when the door is in the opened position. The retractor can be disposed within the fresh food compartment. The door can include a liquid dispenser in communication with the liquid line. The liquid dispenser can be configured to dispense liquid from the door while the door is in the closed position. Movement of the door from the closed position to the opened position can impart a pulling force extracting the released portion of the liquid line from the retractor. The retractor includes a recoil spring that imparts a retracting force upon the liquid line, such that when the door moves toward the closed position, the released portion of the liquid line retracts. The retractor can include a housing into which the released portion of the liquid line retracts when the door moves from the opened position to the closed position. The retractor can further include a recoil spring housed within the housing that imparts a retracting force upon the liquid line, such that when the door moves toward the closed position, the released portion of the liquid line retracts. When the door is in the closed position, the liquid line can be disposed in a linear path between the door and the retractor. The cabinet can further include a tank that stores liquid received from a source external to the refrigerator. The liquid line can be in communication with the tank. A false wall can cover the retractor. The cabinet can further include a freezer compartment, an ice maker in the freezer compartment, and a valve that selectively diverts liquid received from the source external to the refrigerator to either the tank or the ice maker in the freezer compartment. The cabinet can further include a one-way valve between the tank and the liquid line between the door and the cabinet, the one-way valve permitting liquid flow only toward the liquid line from the tank. The door can include a filter in communication with the liquid line that filters the liquid that the liquid line transports to the door. The door can further include a liquid dispenser that dispenses liquid filtered by the filter. The door can further include an ice maker that makes ice from liquid filtered by the filter. The door can further include an ice maker that makes ice from liquid filtered by the filter. The door can further include a valve disposed in communication between the filter and both the ice maker and the liquid dispenser that selectively diverts liquid to either the ice maker or the liquid dispenser. One or more articulated hinges can operably connect the door to the cabinet and that move the door away from the cabinet when the door transitions from the closed position to the opened position.
These and other features, advantages, and objects of the present disclosure will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
Further advantages and features according to the present disclosure will become clear from the following detailed description provided as a non-limiting example, with reference to the attached drawings in which:
The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles described herein.
The present illustrated embodiments reside primarily in combinations of apparatus components related to a refrigerator. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.
For purposes of description herein, the terms,” and derivatives thereof shall relate to the disclosure as oriented in
The terms “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises a . . . ” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
With reference to
Referring now to
Referring now additionally to
Referring now additionally to
Referring now additionally to
The liquid that the liquid receiver 54 receives can then be utilized by the ice maker 40 at the door 20a and the liquid dispenser 36, which is in communication with the liquid receiver 54 and configured to dispense liquid received from the liquid receiver 54. The door 20a can include a reservoir 64 in communication with the liquid receiver 54 that collects liquid expelled from the liquid outlet 52 of the cabinet 12. The reservoir 64 allows for an amount of liquid that will eventually be dispensed by the dispenser assembly 34 in either liquid or ice form to be stored within the door 20a, and compensates for variations in liquid flow from the liquid outlet 52. The door 20a can further include a pump 66 in communication with the reservoir 64 and the liquid receiver 54, to transport liquid received by the liquid receiver 54 and collected in the reservoir 64 to and through the liquid dispenser 36 or to the ice maker 40 in the door 20a. The door 20a can include a valve in communication with the reservoir 64 to prevent the creation of suction drawing material into the reservoir through the liquid receiver 54 when the door 20a is in the opened position 26. The door 20a can further include a filter 68 in communication with the liquid receiver 54 that filters the liquid that the liquid receiver 54 receives from the liquid outlet 52 of the cabinet 12. The filter 68 can be downstream from the pump 66. The pump 66 can provide sufficient pressure to transport the liquid through the filter 68. The door 20a can further include a valve 70 in communication with the liquid receiver 54, such as downstream of the filter 68 that selectively diverts liquid received by the liquid receiver 54 to either the ice maker 40 in the door 20a or the liquid dispenser 36. The liquid dispenser 36 can thus dispense liquid filtered by the filter 68 after being received by the liquid receiver 54 from the liquid outlet 52, and the ice maker 40 can thus make ice from liquid filtered by the filter 68 after being received by the liquid receiver 54 from the liquid outlet 52. The pump 66 can further control the flow rate of liquid through the liquid dispenser 36, such as to achieve the flow rate through the liquid dispenser 36 that the user commands via the dispenser assembly 34.
The gasket 58 and the gasket 60 can each include a mesh component covering at least the inner diameter of the gasket in order to prevent dust and other material from entering into the reservoir 64 or behind the false wall 56 when the door 20a is in the opened position 26. To further maintain the sanitation of the reservoir 64, the door 20a can include a UV light module in light communication with (e.g., adjacent to) the reservoir 64. Additionally, or as an alternative, the reservoir 64 can be releasably attached to the door 20a, to allow the user to remove the reservoir 64 for sanitization.
Referring now to
The liquid line 72 includes a door portion 78 disposed at the door 20a and a cabinet portion 80 disposed at the cabinet 12. The cabinet portion 80 of the liquid line 72 can be disposed within the fresh food compartment 16. In the illustrated embodiment, the cabinet portion 80 of the liquid line 72 is at the same level as the door portion 78 (i.e., at the same height from the ground, assuming level ground). As illustrated in
The refrigerator 10A can otherwise include the described above features of the refrigerator 10. The door 20a can include the liquid dispenser 36, which is in communication with the liquid line 72 and configured to dispense liquid from the door 20a while the door 20a is in the closed position 22. The liquid can be dispensed from the liquid dispenser 36 upon command from the user. The cabinet 12 can further include the tank 44 that stores liquid received from the source 42 external to the refrigerator 10A. The liquid line 72 can then be in communication with the liquid tank 44. The cabinet 12 can further include the freezer compartment and the ice maker 18 in the freezer compartment 14. The valve 46 selectively diverts liquid received from the source 42 external to the refrigerator 10A, and transported from the cabinet 12 to the door 20a by the liquid line 72, to either the tank 44 or the ice maker 18 in the freezer compartment 14. The cabinet 12 can further include the one-way valve 50 between the tank 44 and the liquid line 72 between the door 20a and the cabinet 12, to permit liquid flow only toward the liquid line 72 from the tank 44. The door 20a can include the filter 68 in communication with the liquid line 72 that filters the liquid that the liquid line 72 transports to the door 20a. The door 20a further includes the dispensing apparatus 34 with the liquid dispenser 36. The liquid dispenser 36 dispenses liquid transported by the liquid line 72, including liquid filtered by the filter 68 if present. The door 20a can further include the ice maker 40 that makes ice from liquid transported by the liquid line 72, including liquid filtered by the filter 68 if present. The door 20a can further include the valve 70 between the liquid line 72 (or the filter 68 if present) and both the ice maker 40 and the liquid dispenser 36, and the valve 70 selectively diverts liquid to either the ice maker 40 or the liquid dispenser 36. In addition, the valve 70 prevents liquid from gushing out of the liquid dispenser 36 when the door 20a opens, for example, because of the liquid line 72 decreasing in internal volume, as the liquid line 72 would upon changing from the relaxed state 74 to the stretched state 76 without the valve 70.
Referring now to
The retractor 88 includes a recoil spring 94 (see
In the illustrated embodiment, the released portion 90 of the liquid line 86 that is released from the retractor 88 when the door 20a moves from the closed position 22 to the opened position 26 is at least twice as long as the exposed portion 92 of the liquid line 86 when the door 20a is in the closed position 22. In the illustrated embodiment, the retractor 88 is disposed within the fresh food compartment 16 of the cabinet 12, with the false wall 56 covering and concealing the retractor 88 from view. However, the retractor 88 could be alternatively disposed at the door 20a. When the door 20a is in the closed position 22, the liquid line 86 is disposed in a linear path between the door 20a and the retractor 88. The cabinet 12 and the door 20a each include the guides 82, 84, respectively, that engage the liquid line 86 to prevent crimping as the door 20a moves to the opened position 26 and to guide the liquid line 86 as the retractor 88 retracts the liquid line 86 when the door 20a moves to the closed position 22.
The refrigerator 10B can otherwise include the described above features of the refrigerator 10. The door 20a can include the liquid dispenser 36, which is in communication with the liquid line 86 and configured to dispense liquid from the door 20a while the door 20a is in the closed position 22. The liquid can be dispensed from the liquid dispenser 36 upon command from the user. The cabinet 12 can further include the tank 44 that stores liquid received from the source 42 external to the refrigerator 10B. The liquid line 86 can then be in communication with the tank 44. The cabinet 12 can further include the freezer compartment 14 and the ice maker 18 in the freezer compartment 14. The valve 46 selectively diverts liquid received from the source 42 external to the refrigerator 10B, and transported from the cabinet 12 to the door 20a by the liquid line 86, to either the tank 44 or the ice maker 18 in the freezer compartment 14. The cabinet 12 can further include the one-way valve 50 between the tank 44 and the liquid line 86 between the door 20a and the cabinet 12, to permit liquid flow only toward the liquid line 86 from the tank 44. The door 20a can include the filter 68 in communication with the liquid line 86 that filters the liquid that the liquid line 86 transports to the door 20a. The door 20a further includes the dispensing apparatus 34 with the liquid dispenser 36. The liquid dispenser 36 dispenses liquid transported by the liquid line 86, including liquid filtered by the filter 68 if present. The door 20a can further include the ice maker 40 that makes ice from liquid transported by the liquid line 86, including liquid filtered by the filter 68 if present. The door 20a can further include the valve 70 between the liquid line 86 (or the filter 68 if present) and both the ice maker 40 and the liquid dispenser 36, and the valve 70 selectively diverts liquid to either the ice maker 40 or the liquid dispenser 36.
The utilization of the cooperating liquid outlet 52 and liquid receiver 54 in refrigerator 10, the stretchable liquid line 72 in refrigerator 10A, and the retractable liquid line 86 in refrigerator 10B all solve the problem of not being able to transport liquid (such as water) through normal tubing in a refrigerator from a cabinet 12 to a door 20a when the door is moved from the closed position 22 to the opened position 26 in a non-circular manner such as when an articulated hinge 30 is used to push the door 20a away from the cabinet 12. The solutions presented may be particularly useful for counter depth refrigeration products that utilize a hinge, such as the articulated hinge 30, that allows the door 20a to transition to the opened position 26 in a non-circular manner.
It will be understood by one having ordinary skill in the art that construction of the described disclosure and other components is not limited to any specific material. Other exemplary embodiments of the disclosure disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the disclosure as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present disclosure. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present disclosure, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/038525 | 6/20/2018 | WO | 00 |