The subject matter disclosed herein relates to water heaters, and more particularly to cover assemblies for preventing water seepage into a water heater.
Water heaters including heat pump water heaters (HPWHs) are typically covered with a shroud. The shroud covers a top portion of the water heater, which may include covering elements of a water heater such as an evaporator, a compressor, control circuitry, inlet and outlet pipes, etc. Shrouds may also include a filter.
The shroud serves several functions including, but not limited to, protection of elements of the water heater, structural support and ornamental functions. Shrouds are often expensive to manufacture and are not optimized for use on HPWHs.
Existing shrouds are known to allow water to seep into foam which surrounds the water tank. Such water may ultimately contact the tank, the condenser, the wrapper (around the foam and tank) and the bottom cover of the water heater. Such water seepage can cause corrosion and/or heat loss. Sources of water include, but are not limited to, inlet/outlet port connection leaks, external sources of water above the water heater such as a plumbing leak, an inlet/outlet extension pipe connection at the tank or other tank leak, and condensate from an evaporator which escapes a condensate collection tray. There is also a risk of wetting the foam surrounding the tank of the water heater during maintenance performed on the water heater.
As described herein, the exemplary embodiments of the present invention overcome one or more disadvantages known in the art.
In one embodiment, a water heater system comprises a water heater, a cover, a shroud and at least one ring. The water heater comprises a tank, a layer of foam surrounding the tank and a wrapper surrounding the layer of foam. The cover is positioned on a top edge of the water heater. The shroud is positioned over the cover. The at least one ring is positioned around at least one of an inlet port and an outlet port of the water heater. The cover, shroud and at least one ring are operative to prevent a liquid from coming into contact with at least one of the layer of foam surrounding the tank and one or more components covered by the shroud.
In another embodiment, a shroud assembly for a water heater comprises a first part and a second part. The first and second parts join together along a seam such that the first and the second part form a hollow cylinder. The shroud assembly couples to a first portion of the water heater, and the seam is positioned near an axis of a center of an inlet port and an outlet port of the water heater. The first part of the shroud assembly comprises an opening for a controller of the water heater. At least one of the first part and the second part of the shroud assembly comprises an opening for the inlet port and the outlet port.
In yet another embodiment, a method comprises aligning a first part of a shroud with a corresponding first portion of a water heater, mating a first set of one or more slots or tabs formed on the first part of the shroud with a corresponding first set of slots or tabs formed in the first portion of the water heater, securing the first part of the shroud to a rigid structure of the water heater with a first set of one or more fasteners, aligning a second part of the shroud with the first part of the shroud and a second portion of the water heater, mating a second set of one or more slots or tabs formed on the second part of the shroud with a corresponding second set of slots or tabs formed on the first part of the shroud, securing a top edge of the second part of the shroud with a top edge of the first part of the shroud along a seam with a second set of one or more fasteners, and securing the second part of the shroud to the second portion of the water heater with a third set of one or more fasteners.
In yet another embodiment, a cover assembly for a water heater comprises one or more openings and one or more raised features surrounding at least one of the one or more openings. The one or more raised features are formed such that a liquid near the at least one opening is diverted away from the at least one opening.
In yet another embodiment a sealing ring surrounding a port comprises a base ring of with an inner edge forming a first opening, an interior sidewall sloping upwards from an outer edge of the base ring, an angled surface sloping downwards from a top edge of the interior sidewall, a base wall extending downwards from a bottom edge of the angled surface, a lip formed on the inner edge of the base ring forming a second opening, and a channel formed in a portion of the angled surface and the interior sidewall. The second opening is smaller than the first opening. The second opening is configured to mate with an outer surface of a connection to the port.
In yet another embodiment, a drip shield comprises a back plate and a base plate having a first end integrally formed with the back plate. The back plate couples to a first portion of a heating element port. The first portion of the heating element port projects out of a tank of a water heater. The base plate is positioned such that the base plate is below the first portion of the heating element port.
Advantageously, embodiments of the invention prevent water or other liquids from coming into contact with foam and corrosion-prone materials surrounding a water heater.
These and other aspects and advantages of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. Moreover, the drawings are not necessarily drawn to scale and, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
In the drawings:
One or more of the embodiments of the invention will be described below in the context of an exemplary HPWH. However, it is to be understood that the embodiments of the invention are not intended to be limited solely to the HPWHs described herein. Rather, embodiments of the invention may be applied to and deployed in other suitable environments in which it would be desirable to reduce the manufacturing costs and/or improve the performance of water heaters.
As will be explained in detail herein, one or more illustrative embodiments of the invention provide a low cost metal shroud configured for use with a water heater. For example, one embodiment of the improved shroud includes the following: (a) top inlet/outlet ports; (b) front facing control; (c) airflow path—in through top, out through rear (allows room for front facing control) or in through front (either side of front-facing control), out through rear; and (d) a filter location for top-through-rear flow path, as well as for front-through-rear path. This filter location can be either located in a top of the shroud, directly in front of an evaporator, or in front of unit air inlets. Additionally, the improved shroud provides the following: (a) ease of assembly and service; (b) proper appearance (minimum and even gaps); and (c) satisfaction of structural requirements.
One or more illustrative embodiments of the invention also provide abatement from water (or any other liquid) seepage which, as mentioned above, could wet the foam that surrounds the water tank and/or could cause corrosion of the tank, the condenser and/or the bottom cover of the tank. For example, in one illustrative embodiment, a first set of plastic (polymeric or flexible rubber) rings seal on extension pipes/ports and act to prevent water from dripping down an extension pipe into the tank foam below. The rings are either sloped from an inner diameter to an outer diameter so as to shed water onto the top of the water heater shroud, or shaped to direct spilled water to a preferred location. In another illustrative embodiment, a second set of plastic (polymeric or flexible rubber) rings seal on a tank inlet/outlet port, and act to prevent water from following the extension pipe into the tank foam. Since very little, if any, water should make it past the first set of seal rings, this second set of seals should experience very little water.
Further, it is realized that any condensate water that escapes a condensate tray (not shown), or any water that spills/sprays above the water heater assembly, will fall to the top cover of the water heater. Thus, in yet another illustrative embodiment, the top cover is designed with raised surfaces around all openings, such that water that drips onto the top cover will not pass through holes into the foam. In one example implementation, water that puddles sufficiently to run off the top cover can be directed outside of the water heater, as a notification to a homeowner or maintenance personnel that a water leak needs attention.
Still further, an illustrative embodiment of the invention provides a drip shield. The drip shield is a part that can be positioned under a heating element port of a water heater to prevent water from dripping into the foam during regular maintenance of the heating element.
We now turn to a detailed description of one or more of the various embodiments mentioned above in the context of
Shroud 110 provides several specific functions including an electrical enclosure or cabinet function to prevent access of electrical wiring or terminations, supports user interface controls, airflow channeling (i.e., providing inlet and outlet air openings), structural support such that the HPWH can withstand normal forces encountered during handling, installation and use, and appearance/decorative functions. Shroud 110 is designed to allow for easy assembly and removal, both for manufacturing and service of the HPWH.
Shroud 110 is a metal shroud with top inlet and outlet ports, placed in a location similar to those of existing water heaters. The metal shroud advantageously provides a front facing control as well as optimal airflow path and filter location. The airflow path may be in through the top, out through the rear to allow room for the front facing control, or may be in through the front on either or both sides of the front facing control and out through the rear. The filter location for the top-through-rear and front-through-rear airflow paths can be located in the top of the unit, directly in front of the evaporator, or in front of unit air inlets.
As shown in
The shroud 110 further includes an opening (or openings) through which the hot water outlet 104 and the cold water inlet 106 fit. A filter 122 may be disposed at any suitable location of the shroud 110. In one embodiment, the filter 122 is positioned on a top surface of the first part 111 of the shroud 110, and has a generally hemispherical shape. The filter 122 may be removable from the shroud 110.
As shown in
As shown in
As further shown in
The first part 111 of the shroud 110 is preferably not tethered by the controller 108 (meaning the first part 111 of the shroud can be removed without being tied to the controller 108, or the controller 108 can be easily detached from the first part 111). In an embodiment, the controller 108 can be serviced without removing the shroud 110. In an embodiment, the second part 112 of the shroud 110 can be assembled or removed by a person (or robot) positioned in front of the water heater. This is made possible by at least one or more features. First, there are no rear-facing screws connecting the second part 112 to the water heater 100. Second, the tab 113 of the second part 112 can be secured to the top cover 160 by one or more tabs 150. As illustratively shown in
Gaps between the two parts 111 and 112 can be minimized using the vertical side joints (e.g., tabs 115 and 116), which are made to be face joints (e.g., about a 90 degree bend on the vertical contact edge). As mentioned above, the tapered tab(s) 118 close the gap between the first part 111 and the second part 112. An appearance ring (not shown) may be used to cover all joints around the perimeter at the top of the shroud 110.
One or more structural features of the shroud can carry compressive load through the shroud into the tank/foam assembly. Vertical side-seams with 90-degree bend on a leading edge to give vertical column strength carry vertical load from the top of shroud into the water heater top cover 160 and/or tank/foam assembly. The first part 111 and the second part 112 are configured to carry load from their top portions into evaporator brackets or inlet/outlet extension pipes to the water heater top cover 160 (also called “mid-top cover”). A Z-bend feature along inlet/outlet seam is built into the first part 111 and second part 112 for added support. Columnar design of outlet vents brings vertical load bearing. Shorter vents allows for more columns. Rear tabs 150 that engage rear shroud 112 to the top cover 160, and all screws in the front 180 degrees of the first part 111 and second part 112 carry vertical loads into the top cover 160 and tank/foam assembly. In addition, an I-beam feature may be built into the first part 111 and second part 112 along a seam connecting the inlet and outlet ports for added support.
The method 500 also includes aligning 512 the first part 111 with the second part 112 via the tabs 118. As mentioned above, the tabs 118 may have a tapered configuration that draws the first part 111 and the second part 112 together. The method 500 further includes installing 514 fasteners along a top central edge of the first part to connect the first part 111 to the second part 112. Lastly, the method 500 includes driving 516 one or more side-accessible fasteners through the first part 111 to connect the first part 111 to the water heater body.
The shroud 110 above has been described as having two parts 111 and 112 that are coupled together using tabs 118, slots 117 and fasteners, but other embodiments are possible and contemplated. For example, a hinge may connect the first part 111 and the second part 112 along one side. In such an embodiment, the first part 111 and the second part 112 are opened and placed on the top cover 160. The first part 111 and the second part 112 are then brought together and pulled concentric to the top cover 160 and/or the wrapper 124 using a latch, which can be unfastened.
As mentioned above, it is realized that in existing water heaters, water may pass through a shroud covering a water heater and through the top cover of the water heater and into the foam surrounding the tank of the water heater. Water may ultimately come into contact with the tank, the condenser, the wrapper and the bottom cover of the water heater. Water passing into the foam can lead to corrosion of the condenser, the tank, the wrapper and the bottom cover. It also may lead to increased heat loss due to wet foam. There are various sources of water which may pass through the top cover of the water heater, including inlet/outlet port connection leaks due to an installation or manufacturing defect, an external source above the water heater, a manufacturing defect of the inlet/outlet extension pipe connection at the tank, and condensate from the evaporator which escapes the condensate collection tray. Embodiments of the invention provide techniques for overcoming these issues. For example, illustrative embodiments use sealing rings and/or an improved top cover.
Water seepage abatement techniques as described herein can also be applied to external condensers surrounding a tank of a water heater, such as the steel condensers disclosed in the U.S. patent application Ser. No. 13/571,726, entitled “Condenser for Water Heater,” which is filed concurrently herewith and incorporated by reference herein. Since steel is susceptible to humidity and moisture conditions in water heater environments, a foam layer is used to provide a barrier to such moisture and humidity. In illustrative embodiments, a layer of foam ranging between about a ½ inch and about 2 inches in thickness provides a sufficient barrier. This layer of foam may be in addition to existing foam which surrounds the tank and external condenser, and may be placed in positions on the tank where the risk of exposure to moisture and humidity is greatest. Such positions can include ports of the water heater, such as the heating element ports discussed below.
In use, water falls onto the sealing ring 700 and is either diverted away by the angled surface 702 or falls within moat 704. Water falling in the moat 704 is prevented from slipping down the hot water outlet 104 or the cold water inlet 106 by the base ring 712 and the lip 716 of the first opening 708. Additionally, water captured by the moat 704 is diverted through the channel 706 to exit the sealing ring 700. Water diverted by the sealing ring 700 exits to any point on top of the shroud 110, ultimately finding its way through and dripping on the top cover 160. However, the configuration of the sealing ring 700 ensures that the water does not make it back to the hot water outlet 104 or the cold water inlet 106. In the arrangement of
During maintenance of a heating element of a water heater, it is realized that water may drip into the foam surrounding the heating element port. In addition, a leaking heating element port may drip water into the foam surrounding the heating element port during normal operation of a water heater. Illustrative embodiments of the invention provide drip shields to prevent a heating element port from leaking or dripping water into the foam of the water heater, which as discussed above can lead to various problems.
The drip shield 800 includes a first member 820. The first member 820 has a backplate 822. The backplate 822 has an opening 826 formed therein. The opening 826 is sized to fit around a portion of a heating element port 191 that projects from the tank of the water heater. The heating element port 191 may surround an upper heating element 192 of the water heater as shown in
Another embodiment of a drip shield 800′ is shown in
Other techniques and apparatus may be used in conjunction with drip shields to prevent water seepage around a heating element port 191, including a foam dam as described in the U.S. patent application Ser. No. 13/571,789, entitled “Foam Dam for Appliance,” which is filed concurrently herewith and incorporated by reference herein.
As used herein, an element or function recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or functions, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the claimed invention should not be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments. Other embodiments will occur to those skilled in the art and are within the scope of the following claims.
The present application is a divisional of U.S. Non-Provisional application Ser. No. 13/571850, filed on Aug. 10, 2012, entitled “Water Seepage Abatement in Water Heaters,” which claims priority to the U.S. Provisional Application identified as Ser. No. 61/524,418, filed on Aug. 17, 2011, entitled “Condenser, Shroud, Foam Dam and Drip Plate for Water Heater,” the disclosures of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 13571850 | Aug 2012 | US |
Child | 14629867 | US |