none
1. Field of the Invention
The invention relates generally to systems and methods for selective control of fluid flow into a wellbore.
2. Description of the Related Art
Hydrocarbons such as oil and gas are recovered from a subterranean formation using a wellbore drilled into the formation. Such wells are typically completed by placing a casing along the wellbore length and perforating the casing adjacent each such production zone to extract the formation fluids (such as hydrocarbons) into the wellbore. These production zones are sometimes separated from each other by installing a packer between the production zones. Fluid from each production zone entering the wellbore is drawn into tubing that runs to the surface. It is desirable to have substantially even drainage along the production zone. Uneven drainage may result in undesirable conditions such as an invasive gas cone or water cone. In the instance of an oil-producing well, for example, a gas cone may cause an inflow of gas into the wellbore that could significantly reduce oil production. In like fashion, a water cone may cause an inflow of water into the oil production flow that reduces the amount and quality of the produced oil. Accordingly, it is desired to provide even drainage across a production zone and/or the ability to selectively close off or reduce inflow within production zones experiencing an undesirable influx of water and/or gas.
The present disclosure addresses these and other needs of the prior art.
In aspects, the present disclosure provides a method for producing fluid from a subterranean formation. In one arrangement, the method includes configuring a body to at least partially fill with a selected fluid; and actuating a flow restriction element using the body. The selected fluid may be water. In aspects, the method may include controlling an entry of fluid into the body using a membrane. In aspects, the membrane may be configured to block a flow of hydrocarbons into the body. In aspects, the method may also include venting a fluid from the body as the body fills with the selected fluid. In further aspects, the method may include controlling a flow of fluid into a passage in communication with a flow bore; and applying a force to the flow restriction element using the body as the body fills with the selected fluid. The force may urge the flow restriction element into a sealing engagement with the passage. The flow restriction element may include an open position wherein the flow restriction element is disengaged from the passage and a closed position wherein the flow restriction element at least partially blocks the passage. The flow bore may be a bore of a wellbore tubular. In aspects, the method may include maintaining the flow restriction element in the open position while the body is substantially not filled with water, and shifting the flow restriction element to the closed position after the body substantially fills with water.
In aspects, the present disclosure provides an apparatus for controlling flow of a fluid into a wellbore tubular. In one embodiment, the apparatus may include a selectively buoyant body configured to fill with a selected fluid, and a flow restriction element responsive to a movement of the selectively buoyant body. In aspects, the selectively buoyant body includes a membrane configured to block a flow of hydrocarbons into the selectively buoyant body. The selected fluid may include water. The selectively buoyant body may be coupled to the flow restriction element. In aspects, the flow restriction element may include, but not be limited to, a flapper, a sliding sleeve, and a poppet valve. In aspects, the interior of the body may be at least partially filled with a permeable material, which includes, but is not limited to, open-cell foam, reticulated metal foam, shaped sintered powder and capillary tubes.
In aspects, the present disclosure provides a system for controlling a flow of a fluid in a well intersecting a formation of interest. The system may include a tubular configured to be disposed in the well; a flow restriction element positioned at a selected location along the tubular, the flow restriction element being configured to control flow between a bore of the tubular and the exterior of the tubular; and an actuator coupled to the flow restriction element. The actuator may include a selectively buoyant body that has an interior space and a membrane controlling fluid communication into the interior space. In aspects, a valve may be used to vent the interior space. In embodiments, the system may include a plurality of flow restriction elements positioned at selected locations along the tubular. Each flow restriction element may be configured to control flow between a bore of the tubular and the exterior of the tubular. An actuator coupled to each flow restriction element may include a selectively buoyant body having an interior space and a membrane controlling fluid communication into the interior space.
It should be understood that examples of the more important features of the disclosure have been summarized rather broadly in order that detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
The advantages and further aspects of the disclosure will be readily appreciated by those of ordinary skill in the art as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference characters designate like or similar elements throughout the several figures of the drawing and wherein:
The present disclosure relates to devices and methods for controlling production of a hydrocarbon producing well. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. Further, while embodiments may be described as having one or more features or a combination of two or more features, such a feature or a combination of features should not be construed as essential unless expressly stated as essential.
Referring initially to
Each production nipple 34 features a production control device 38 that is used to govern one or more aspects of a flow of one or more fluids into the production assembly 20. As used herein, the term “fluid” or “fluids” includes liquids, gases, hydrocarbons, multi-phase fluids, mixtures of two of more fluids, water, brine, engineered fluids such as drilling mud, fluids injected from the surface such as water, and naturally occurring fluids such as oil and gas. In accordance with embodiments of the present disclosure, the production control device 38 may have a number of alternative constructions that ensure selective operation and controlled fluid flow therethrough.
Referring now to
In one embodiment, the production control device 100 includes a particulate control device 110 for reducing the amount and size of particulates entrained in the fluids, an in-flow control device 120 that controls overall drainage rate from the formation, and a flow control device 130 that controls in-flow area based upon the composition of a fluid in the vicinity of the flow control device 130. The particulate control device 110 can include known devices such as sand screens and associated gravel packs and the in-flow control device 120 can utilize devices employing tortuous fluid paths designed to control inflow rate by creating pressure drops. Exemplary flow control devices are discussed below.
Referring now to
Referring now to
As shown, the void 210 may also includes a permeable material 218. The permeable material 218 may be any material formed to receive, store, and/or convey fluids and may include, but not be limited to, open-cell foams, reticulated metal foams, shaped sintered powder and capillary tubes. The permeable material 218 may be configured to provide structural support for the enclosure 208, membrane 214, filter element 216, etc., and/or to provide a capillary effect to assist in drawing water into or throughout the enclosure 208. In certain embodiments, the enclosure 208 may be formed of a flexible material that is wrapped around a relatively rigid open-cell material 218. Such an enclosure 208 may be formed partially or completely of a membrane configured to allow a flow of water into the relatively rigid open-cell material 218.
Initially, the void 210 may be at least partially empty. Optionally, a one way check valve 222 may be used to allow gas to escape the body 202 as the void 210 fills with water W. Thus, initially, the body 202 may be buoyant in the surrounding in-flowing fluid. In one arrangement, the body 202 is connected to one end of the flow restriction element 204. In other arrangements, the body 202 may be connected to a lever or other suitable mechanism that can shift the flow restriction element 204 between an open and closed position in response to the movement or motion of the body 202. Optionally, an opening force may be used to keep the flow restriction element 204 in an opening position. As shown, the opening force may be applied by a spring element 216. Other devices for generating an opening force include hydraulic pressure, pneumatic pressure, a magnetic field, etc.
During fluid flow with little or no water cut, the membrane 214 prevents hydrocarbons H from entering the enclosure 208. Thus, the body 202 may float in the in-flowing fluid and the flow restriction element 204 is maintained in an open position. When the body 202 is exposed to a sufficient amount of water W, the membrane 214 permits water W to enter into the void 210. If present, the valve 222 permits gases in the void 210 to escape. As the void 210 gradually fills with water W, the body 202 loses its buoyancy. The body 202 sinks due to gravity and applies a closing force on the flow restriction element 204. Once the closing force is of a sufficient magnitude to overcome the opening force of the biasing element 216, (if present), the flow restriction element 204 moves into sealing engagement with the passage 206.
Thus, in aspects, embodiments of the present disclosure may include flow control devices that utilize bodies that are selectively buoyant. The flow control device may be used to directly shift a flow restriction element from a open position to a closed position. The flow control devices may be positioned on a wellbore high side and sink in a surrounding fluid when exposed to water. The sinking of the flow control device actuates a flow restriction element to a closed position.
Referring now to
Thus, in aspects, embodiments of the present disclosure may include flow control devices that have selectively controllable buoyancy that may be in connection with a separate actuator that shifts a flow restriction element from an open position to a closed position. The flow control devices may be positioned on a wellbore low side and the selectively buoyant body may sink in a surrounding fluid when exposed to water. The sinking of the flow control device actuates the separate actuator to shift the flow restriction element to the closed position.
Referring now to
In some embodiments, the selectively buoyant body may be configured to react with an engineered fluid, such as drilling mud, or fluids introduced from the surface such as brine. Thus, in addition to a change in composition of the fluid flowing from the formation, the flow control devices can be activated as needed from the surface. Also, such fluid may be used to evacuate the selectively buoyant body of water to reset the flow restriction element to an open position. Additionally, it should be understood that
From the above, it should be appreciated that what has been described includes a method for producing fluid from a subterranean formation. In one arrangement, the method includes configuring a body to at least partially fill with a selected fluid; and actuating a flow restriction element using the body. The selected fluid may be water. In aspects, the method may include controlling an entry of fluid into the body using a membrane. In aspects, the membrane may be configured to block a flow of hydrocarbons into the body. In aspects, the method may also include venting a fluid from the body as the body fills with the selected fluid. In further aspects, the method may include controlling a flow of fluid into a passage in communication with a flow bore; and applying a force to the flow restriction element using the body as the body fills with the selected fluid. The force may urge the flow restriction element into a sealing engagement with the passage. The flow restriction element may include an open position wherein the flow restriction element is disengaged from the passage and a closed position wherein the flow restriction element at least partially blocks the passage. The flow bore may be a bore of a wellbore tubular. In aspects, the method may include maintaining the flow restriction element in the open position while the body is substantially not filled with water, and shifting the flow restriction element to the closed position after the body substantially fills with water.
It should be appreciated that what has been described also includes an apparatus for controlling flow of a fluid into a wellbore tubular. In one embodiment, the apparatus may include a selectively buoyant body configured to fill with a selected fluid, and a flow restriction element responsive to a movement of the selectively buoyant body. In aspects, the selectively buoyant body includes a membrane configured to block a flow of hydrocarbons into the selectively buoyant body. The selected fluid may include water. The selectively buoyant body may be coupled to the flow restriction element. In aspects, the flow restriction element may include, but not be limited to, a flapper, a sliding sleeve, and a poppet valve. In aspects, the interior of the body may be at least partially filled with a permeable material, which includes, but is not limited to, open-cell foam, reticulated metal foam, shaped sintered powder and capillary tubes.
It should be appreciated that what has been described also includes a system for controlling a flow of a fluid in a well intersecting a formation of interest. The system may include a tubular configured to be disposed in the well; a flow restriction element positioned at a selected location along the tubular, the flow restriction element being configured to control flow between a bore of the tubular and the exterior of the tubular; and an actuator coupled to the flow restriction element. The actuator may include a selectively buoyant body that has an interior space and a membrane controlling fluid communication into the interior space. In aspects, a valve may be used to vent the interior space. In embodiments, the system may include a plurality of flow restriction elements positioned at selected locations along the tubular. Each flow restriction element may be configured to control flow between a bore of the tubular and the exterior of the tubular. An actuator coupled to each flow restriction element may include a selectively buoyant body having an interior space and a membrane controlling fluid communication into the interior space.
For the sake of clarity and brevity, descriptions of most threaded connections between tubular elements, elastomeric seals, such as o-rings, and other well-understood techniques are omitted in the above description. The foregoing description is directed to particular embodiments of the present disclosure for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope of the disclosure.