The invention relates to an apparatus for storing water sports equipment, particularly on a boat.
Boats, particularly recreational boats, are designed for multiple activities on the water. Such activities include water sports such as wake surfing, wakeboarding, water skiing, and the like. These water sports require the use of various equipment such as surfboards, wakeboards, water skis, and the like.
In one aspect, the invention relates to a water sports equipment storage rack. The water sports equipment storage rack includes at least one U-shaped support including a slot, a claw, a drive mechanism, and a biasing member. The claw includes a tip. The claw is (i) configured to linearly move in an outward direction away from the slot and in an inward direction towards the slot and (ii) rotatable about a pivot axis between an open position and a closed position such that the tip of the claw is closer to the slot in the closed position than it is in the open position. The drive mechanism is configured to linearly move the claw in the outward direction and the inward direction. The biasing member is configured to (i) impart a biasing force to rotate the claw about the pivot axis in a direction toward the closed position and (ii) reduce the biasing force as the claw approaches the end of its linear travel, allowing the claw to move to the open position.
In another aspect, the invention relates to a water sports equipment storage rack. The water sports equipment storage rack includes a pair of U-shaped supports, a claw, a drive mechanism, and a biasing member. The pair of U-shaped supports is spaced apart from each other by a distance. Each U-shaped support includes a slot with an opening. The slot has a first end, a second end, and a centerline. The opening of the slot is on the second end of each slot. The slots of each U-shaped are aligned with each other in a direction transverse to the centerline of each slot. The claw is positioned between the U-shaped supports and includes a tip. The claw is (i) configured to linearly move in an outward direction away from the slots and in an inward direction towards the slots and (ii) rotatable about a pivot axis between an open position and a closed position such that the tip of the claw is closer to the slot in the closed position than it is in the open position. The drive mechanism is configured to linearly move the claw in the outward direction and the inward direction. The biasing member is configured to (i) impart a biasing force to rotate the claw about the pivot axis in a direction toward the closed position and (ii) reduce the biasing force as the claw approaches the end of its linear travel, allowing the claw to move to the open position.
In a further aspect, the invention relates to a water sports equipment storage rack assembly having a plurality of racks. Each rack of the plurality of racks includes a pair of U-shaped supports, a claw, a drive mechanism, and a biasing member. The pair of U-shaped supports is spaced apart from each other by a distance. Each U-shaped support includes a slot with an opening. The slot has a first end, a second end, and a centerline. The opening of the slot is on the second end of each slot. The slots of each U-shaped are aligned with each other in a direction traverse to the centerline of each slot. The claw is positioned between the U-shaped supports and includes a tip. The claw is (i) configured to linearly move in an outward direction away from the slots and in an inward direction towards the slots and (ii) rotatable about a pivot axis between an open position and a closed position such that the tip of the claw is closer to the slot in the closed position than it is in the open position. The drive mechanism is configured to linearly move the claw in the outward direction and the inward direction. The biasing member is configured to (i) impart a biasing force to rotate the claw about the pivot axis in a direction toward the closed position and (ii) reduce the biasing force as the claw approaches the end of its linear travel, allowing the claw to move to the open position.
These and other aspects of the invention will become apparent from the following disclosure.
As used herein, directional terms forward (fore), aft, inboard, and outboard have their commonly understood meaning in the art. Relative to the boat, forward is a direction toward the bow, and aft is a direction toward the stern. Likewise, inboard is a direction toward the center of the boat and outboard is a direction away from it.
As noted above, water sports require the use of various equipment such as surfboards, wakeboards, water skis, and the like. When not in use, this equipment preferably is stored on the boat, such as in racks or compartments. These racks and compartments may be designed to maximize the space onboard the boat and prevent the equipment from moving around while stored. Surfboards and wakeboards (boards) may be relatively large, having lengths greater than 4½ feet and widths of 20 inches or greater, and a rack may be a preferred method of storing the surfboards and wakeboards. The rack is preferably designed to allow a person (user) to easily place the board into the rack and remove it from the rack, and still securely hold the board in the rack while the boat is underway.
In the embodiment shown in
The control console 142 encloses various controls for operating the boat 100. Suitable controls include those shown and described in U.S. Patent Application Publication No. 2018/0314487, which is incorporated by reference herein in its entirety, for operating the boat 100, the various devices described herein, and other systems, including, for example, audio systems. The boat 100 is driven by a single inboard motor (not shown) connected to a propeller (not shown) by a drive shaft (not shown). However, this invention can be utilized with other types of boats and propulsion systems, including but not limited to outboard motors, sterndrives, jet drives, and the like.
The boat 100 has a deck 140 which includes a floor 146. Passenger seating, such as port and starboard bench seating 151, 152, 153, 154 in both the bow seating area 132 and primary seating area 134, may be constructed on elevated portions (seat support structures) of the deck 140. As used herein, these portions are elevated with respect to the level of the floor 146. Other seating locations within the boat's interior 130 include a captain's chair 156 at the control console 142 and a reversible bench seat 158. Although the invention is described with reference to a particular seating arrangement, different seating arrangements are contemplated to be within the scope of the invention.
The deck 140 may also include two support structures (elevated portions of the deck) for the control console 142 and the passenger side console 144. The windshield 104 is mounted, in part, on forward portions of the support structures for the control console 142 and the passenger side console 144. In this embodiment, the windshield 104 is mounted directly to a forward portion of the support structures and the gunwales 122, 124, but the windshield 104 may be suitably mounted to other portions of the control console 142 and the passenger side console 144. Near the walkway 138 or centerline 102 of the boat 100, the windshield 104 is oriented such that it is perpendicular to the centerline 102 of the boat 100. Moving outboard from the centerline 102 of the boat 100, the windshield 104 is curved such that it smoothly transitions to an orientation that is parallel to or co-planar with the port side 116 or starboard side 118 of the hull 110 near the gunwales 122, 124, which in this embodiment is generally parallel to the centerline 102 of the boat 100.
The boat 100 may also include a horizontal swim platform (not shown) attached to the transom 114 to make it easier for people to get into the water from the boat 100 or into the boat 100 from the water. The swim platform is omitted from
The boat 100 may include the capability to add ballast. Ballast may be used to increase the weight and displacement of the boat 100 and increase the size of the wake for water sports such as wakeboarding or wake surfing. Any suitable means to add ballast may be used including ballast bags (sacks) or ballast tanks. The boat 100 shown in
The boat 100 may be equipped with surf devices 172, 174, which may be used to shape the wake of the boat for wake surfing. Any suitable surf devices may be used including, for example, the port and starboard wake-modifying devices disclosed in U.S. Pat. No. 8,833,286, which is incorporated by reference herein in its entirety. Each of the port and starboard surf devices 172, 174 includes a plate-like member that is pivotably attached to the transom 114 of the boat 100. The plate-like members pivot about pivot axes to move between a non-deployed position and a deployed position. In this embodiment, the pivot axes are hinges. Here, the hinges are piano hinges that are welded to a leading portion of each plate-like member and attached to the transom 114 of the boat 100 using screws. However, any suitable pivotable connection may be used and may be affixed to the transom 114 of the boat 100 and the port and starboard surf devices 172, 174 using any suitable means, including but not limited to bolts, screws, rivets, welding, and epoxy. Each of the port and starboard surf devices 172, 174 also may include one or more downturned and/or upturned surfaces, such as downturned surfaces at the trailing edge of the plate-like members that are angled at a downward angle relative to the plate-like member. However, as noted above, any suitable surf device may be used and other suitable surf devices may include, for example, the port and starboard wake-modifying devices disclosed in U.S. Pat. No. 9,802,684, which is incorporated by reference herein in its entirety.
As shown in
Each of the surf devices 172, 174 and the center tab 176 is moveable between the deployed position and the non-deployed position by a drive mechanism 178. In the embodiment shown, one drive mechanism 178 is used for each surf device 172, 174 and the center tab 176, allowing them to be independently operated. Each of the drive mechanisms 178 shown in this embodiment is a linear actuator. The linear actuator preferably is an electric linear actuator, such as one available from Lenco Marine. One end of the linear actuator is connected to the transom 114 of the boat 100 and the other end is connected to the surf device 172, 174 or center tab 176. Any suitable means may be used to move the surf devices 172, 174 and the center tab 176 between the deployed and non-deployed positions, including but not limited to hydraulic linear actuators, gas assist pneumatic actuators, and electrical motors.
The boat 100 is also equipped with an apparatus for towing a water sports participant. As shown in
The rack assembly 200 is configured to attach to the tower 180 and, more specifically in this embodiment, to the port leg 182 and the starboard leg 184 of the tower 180. The rack assembly 200 includes a mounting structure 210 that is attached to one of the port leg 182 and the starboard leg 184. In
As noted above, the rack assembly 200 includes the mounting structure 210. One end of the stay 212 of the mounting structure 210 is attached to the tower 180, and the rack 220 is connected to the other end of the stay 212. In this embodiment, the rack 220 is pivotably connected to the stay 212. The rack 220 attaches to a support bracket assembly 214, and the support bracket assembly 214 is pivotably connected to the stay 212 by a hub 216. The hub 216 allows the rack 220 to rotate. In this embodiment, the hub 216 has a pivot axis that is generally vertical and the hub 216 enables the rack 220 to rotate 180 degrees such that the rack 220 can be positioned outboard of the corresponding gunwale and/or side of the hull or rotated 180 degrees to be positioned inboard of the gunwale and over the deck 140. As shown in
The features and operation of the upper rack 220U and the lower rack 220L are the same, and the following description of the upper rack 220U also applies to the lower rack 220L. The upper rack 220U includes a plurality of U-shaped supports 230. In this embodiment, the upper rack 220U includes a pair of U-shaped supports 230. Each U-shaped support 230 defines a slot 222. More specifically in this embodiment, the U-shaped support 230 includes two prongs, an upper prong 232 and a lower prong 234. The slot 222 is formed between the upper prong 232 and the lower prong 234, and, in this embodiment, the slot 222 is elongated having a lower end (first end) and an upper end (second end). In this embodiment, the upper prong 232 and the lower prong 234 are oriented parallel to each other, but the upper prong 232 and the lower prong 234 may have other orientations with the slot 222 formed therebetween. For example, one of the upper prong 232 and the lower prong 234 being oriented with a small acuate angle relative to the other prong 232, 234 so that the open end (second end or upper end) of the slot 222 is wider than the lower end (first end). A centerline 224 of the slot 222 is located halfway between the upper prong 232 and the lower prong 234 and extends from the lower end to the upper end. The U-shaped support 230 also includes a cross support 236 connecting the upper prong 232 to the lower prong 234 to form the U-shape. The cross support 236 is located at the lower end of the slot 222 and includes a contact surface 238 that faces the slot 222. The upper end of the slot 222 is open (having an opening).
The slot 222 is configured to receive a board 10 (e.g., wakeboard or surfboard), as shown, for example, in
The board 10 is positioned in the slot 222 with the width of the board 10 aligned in the direction of the slot 222. When the board 10 is secured in the slot 222, as will be discussed further below, a centerline of the board 10 may be coincident with the centerline 224 of the slot 222. The U-shaped supports 230 are spaced apart from each other by a distance. The U-shaped supports 230 also are positioned with the slots 222 of each U-shaped support 230 aligned with each other in the lengthwise direction of the board 10, such that the first side edge 12 of the board 10 contacts each contact surface 238 of the pair of U-shaped supports 230. The upper rack 220U is configured to contact the board 10 at at least two positions on the first side edge 12 of the board 10. The lengthwise direction of the board 10 is a direction transverse to the centerline 224 of the slot 222, and more specifically, a direction orthogonal to the centerline 224 of the slot 222.
The rack assembly 200 includes a claw mechanism 240 having a claw 241. To secure the board 10 is secured in place, the claw 241 presses the board 10 against both contact surfaces 238 of the U-shaped supports 230. The claw 241 has a contact surface 243 configured to contact a second side edge 14 of the board 10. As with the contact surface 238 of the cross support 236, the contact surface 243 of the claw 241 is curved or has a V-shape, and the board 10, specifically the second side edge 14, can be positioned against the vertex of the contact surface 243 to help position the board 10 in the slot 222. With the first side edge 12 and the second side edge 14 of the board 10 in the vertex of the contact surface 238 of the cross support 236 and the vertex of the contact surface 243 of the claw 241, the board 10 is raised such that it does not rest on or contact the upper prong 232 and the lower prong 234, as shown in
In this embodiment, as shown in
The claw 241 is moveable to secure and release the board 10 in the upper rack 220U. The operation of the claw 241 and the claw mechanism 240 to secure and release the board 10 will be described with reference to
In the preferred embodiment shown, the rack assembly 200 includes two powered actuators 260, one for each of the upper rack 220U and the lower rack 220L. Both powered actuators 260 are located in an actuator housing 226 (see also
The powered actuator 260 includes a rod 262 that moves outward from the actuator housing 226 in direction A (
As noted above, the claw 241 is pivotably attached to the end of the rod 262. The claw 241 is moveable between an open position and a closed position. As noted above,
The claw 241 is maintained in the closed position by a biasing member. In this embodiment, the biasing member is a gas spring 250 (pneumatic spring), but other suitable biasing members may be used including, for example, mechanical springs such as compression springs or torsion springs. The gas spring 250 includes a rod 252 that is connected to the claw 241 by a coupling 254. The gas spring 250 is configured to exert a biasing force on the claw 241 to rotate the claw 241 in a closed direction about the pivot axis 245. The gas spring 250 is connected to the claw 241 by a lever 249. In this embodiment, the gas spring 250 is connected to the claw 241 in a counterweight arrangement with the gas spring 250, more specifically, the coupling 254, on an opposite side of the pivot axis 245 from the claw 241. With this arrangement, the gas spring 250 exerts the biasing force in a direction away from the actuator housing 226 to bias the claw 241 towards its closed position. The gas spring 250 exerts the biasing force to rotate the claw 241 about the pivot axis 245 in a direction toward the closed position. The gas spring 250 is also located in the actuator housing 226 next to the powered actuator 260. In this embodiment, the gas spring 250 of the upper rack 220U is positioned above the gas spring 250 of the lower rack 220L and both gas springs 250 are positioned between each of the powered actuators 260.
The claw 241 of the upper rack 220U is shown in its inward-most position in
The coupling 254 may be slidably coupled to the end of the rod 252 of the gas spring 250 such as by having a socket 256 into which the end of the rod 252 of the gas spring 250 may be inserted. The socket 256 preferably has a geometry that corresponds to the geometry of the rod 252 of the gas spring 250. In this embodiment, the rod 252 of the gas spring 250 is cylindrical and the socket 256 is also cylindrical. The length of the socket 256 is preferably longer than the difference between the full length of travel of the rod 252 of the gas spring 250 and the rod 262 of the powered actuator 260 to prevent the rod 262 of the powered actuator 260 from disengaging from the coupling 254. Other suitable connections may be used between the coupling 254 and the end of the rod 252 of the gas spring 250, such as, for example, fasteners or latches. When such connections are used, the rod 252 of the gas spring 250 may exert a force in the direction C to pull the claw 241 in direction E.
Once the claw 241 is in its open position, the board 10 can be slid into the slots 222 of the U-shaped supports 230 without interference of the claw 241. With the board 10 in the slot 222, the user drives the rod 262 of the powered actuator 260 in direction B as shown in
As the claw 241 is driven inward, the contact surface 243 of the claw 241 contacts the second side edge 14 of the board 10 and pushes the first side edge 12 of the board 10 against the contact surface 238 of the cross support 236, to the extent the first side edge 12 is not already against the contact surface 238 of the cross support 236. The biasing force of the gas spring 250 is set to keep the claw 241 in the closed position as the claw 241 contacts the second side edge 14 of the board 10. When the first side edge 12 of the board 10 contacts the contact surface 238 of the cross support 236, the shape of the contact surface 238 of the cross support 236 and the contact surface 243 of the claw 241 guide the respective first side edge 12 and second side edge 14 of the board 10 to the vertices of the contact surfaces 238, 243, as shown in
The biasing force of the gas spring 250 is preferably set to securely hold the board 10 securely in the upper rack 220U and prevent the board 10 from slipping out of the upper rack 220U as the boat 100 is operated. The biasing force of the gas spring 250 should also be low enough that the claw 241 does not damage or crush the board 10. For example, if a user continues to drive the rod 262 of the powered actuator 260, and thus the claw 241, inward after the board 10 is secured in the upper rack 220U, the biasing force of the gas spring 250 is set such that the board 10 pushes the claw 241 towards the open position (direction D), against the biasing force, without causing damage to the board 10. With such a setting, it is also possible to manually open the claw 241 by a user pulling the tip 247 of the claw 241 in direction D to release the board 10 from the upper rack 220U. Depending upon the moment arms of the lever 249 and the claw 241, the biasing force may preferably be set within a desired range, such that the claw 241 preferably exerts a force within a desired range on the board 10 when the board 10 is secured in the upper rack 220U.
As noted above, the rack assembly 200 includes a plurality of racks 220 including the upper rack 220U and the lower rack 220L. Although described as the upper rack 220U and the lower rack 220L with the upper rack 220U being positioned above the lower rack 220L when installed on the boat 100, these racks 220 may have other orientations such that they are next to each other, for example. In these embodiments, the boards 10 are preferably stacked parallel to each other in the racks 220. Preferably, the centerline 224 of the slots 222 of the U-shaped supports 230 of the upper rack 220U (a first rack) are parallel to the centerline 224 of the slots 222 of the U-shaped supports 230 of the lower rack 220L (a second rack).
Although this invention has been described with respect to certain specific exemplary embodiments, many additional modifications and variations will be apparent to those skilled in the art in light of this disclosure. It is, therefore, to be understood that this invention may be practiced otherwise than as specifically described. Thus, the exemplary embodiments of the invention should be considered in all respects to be illustrative and not restrictive, and the scope of the invention to be determined by any claims supportable by this application and the equivalents thereof, rather than by the foregoing description.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 63/190,007, filed May 18, 2021, and titled “Water Sports Equipment Storage Rack,” the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63190007 | May 2021 | US |