The present application belongs to the technical field of cross-sea tunnel construction technology, and in particular relates to a water stopping device of suspension and sliding type and an application thereof.
Closure joint construction of submarine immersed tunnel projects is a key process of the overall immersed tunnel construction and is also the last segment for the tunnel closure and whole through, and its installation accuracy and water stopping effect will directly affect the success of the entire immersed tunnel construction. The closure joint construction of an immersed tunnel with push-out segment is applied for the first time in China, and there is no previous experience available for the construction of water stopping devices. In the stretching motion of a push-out segment, the water stopping devices in between the push-out segment and an enlarged segment should move synchronously with the push-out segment, and the water stopping effect of the water stopping devices should be ensured during and after the construction.
However, the closure joint construction is carried out underwater in poor operating conditions and harsh environment. If a water stop of the water stopping device is directly wrapped on the surface of the push-out segment, it will cling to the surface of the push-out segment under the action of hydraulic pressure difference, which will hinder the stretching motion of the water stop and cause the water stop to tear in severe cases. Therefore, during construction, it is particularly important to ensure the water stopping effect of the water stopping devices in motion.
An objective of the present application is to provide a water stopping device of suspension and sliding type, which can be applied in the joint construction of an immersed tunnel and can effectively reduce the adhesion between a water stop and a push-out joint.
According to a first aspect of the present application, a water stopping device of suspension and sliding type is provided, including:
a water stop; a first end of the water stop is connected with a first joint segment and is able to move axially with the first joint segment; and a second end of the water stop is connected with a second joint segment; so as to form a water stopping cavity;
at least one first rod; a first end of the first rod is connected with the first joint segment and is able to move with the first joint segment; and a second end of the first rod is movably connected with the second joint segment and is able to move relative to the second joint segment; and at least one first hanging structure; connected with the water stop and the corresponding first rod and being slidably provided on the corresponding first rod.
Optionally, the first rod is located outside the water stopping cavity; the water stopping device of suspension and sliding type further includes at least one second rod located in the water stopping cavity and provided on the first joint segment, and at least one second hanging structure is slidably provided on the second rod and connected with the water stop within the water stopping cavity.
Optionally, the second hanging structure is elastically connected with the water stop.
Optionally, the water stop is with an M-shaped cross section and includes flat portions and folded portions, where one folded portion is formed between every two adjacent flat portions.
Optionally, a tension rope is provided between the adjacent flat portions.
Optionally, the folded portion is provided with a support member, and the support member is preferably a curved plate fitted to the folded portion.
Optionally, the water stop is annular, and the curved plates adopt one or a combination of the following five ways:
first way, the curved plate is provided along an outer circumference of the folded portion of the water stop to form an annular support ring;
second way, the curved plate is provided along an inner circumference of the folded portion of the water stop to form an annular support ring;
third way, an elastic restraint strap is provided along an outer circumference of the folded portion of the water stop;
fourth way, multiple curved plates are spaced and arranged along an outer circumference of the folded portion of the water stop, and are disconnected at outer corners of the water stopping cavity, and an elastic restraint strap is provided at each outer corner;
fifth way, multiple curved plates are spaced and arranged along an inner circumference of the folded portion of the water stop, and are disconnected at inner corners of the water stopping cavity, and an elastic restraint strap is provided outside the water stopping cavity corresponding to each disconnection position (i.e., at each outer corner).
Optionally, the first rod is L-shaped, with a first edge connected with the first joint segment and a second edge movably connected with a limit device on the second joint segment, and the first hanging structure is provided on the second edge. Optionally, the second rod is linear; and the first joint segment is provided with a groove, and the second rod is installed in the groove.
Optionally, a first hole is axially formed at the limit device, and the second edge of the first rod runs through the first hole to move with the first joint segment. Or optionally, a second long hole is axially formed on the second edge of the first rod, the limit device is located in the second long hole, and a head is provided on the limit device for avoiding the limit device dropping out of the second long hole.
Optionally, a third hole for the first rod to run through is formed at the first hanging structure, and a first end of the first hanging structure is connected with the water stop through the support member; and a fourth hole for the second rod to run through is formed at the second hanging structure, and a first end of the second hanging structure is elastically connected with the support member installed on the water stop. Optionally, the support member is the curved plate, the first end of the first hanging structure and the first end of the second hanging structure are connected with an outer surface of the corresponding curved plate respectively, and an inner surface of the curved plate is connected with the folded portion of the water stop. Optionally, the first hanging structure is integrated with or rigidly connected with the curved plate.
Optionally, a plurality of the first rods are spaced and arranged at least on an upper surface of the first joint segment, and a plurality of the first hanging structures are spaced and arranged on the same first rod; a plurality of the second rods are spaced and arranged at the bottom of the first joint segment, and a plurality of the second hanging structures are spaced and arranged on the same second rod; and each hanging structure is connected with the corresponding folded portion of the water stop.
In a second aspect of the present application, an application of a water stopping device of suspension and sliding type in the joint construction of an immersed tunnel is provided. The water stopping device of suspension and sliding type is the water stopping device described in any of the preceding embodiments.
Compared with the prior art, the beneficial effects of the present application are:
The water stopping device provided by at least one embodiment of the present application can be applied to the closure joint construction process of the push-out immersed tunnel, and can telescopically move along with the push-out segment (i.e., the first joint segment) during the stretch out and draw back process. The water stopping device can play a supporting role and is not affected by the water pressure, so as to ensure the water stop effect of the whole process in the moving state of the closure joint construction.
in which 1 first joint segment; 2 second joint segment; 3 water stop; 301 first end of water stop; 302 second end of water stop; 303 flat portion; 304 folded portion; 3041 first folded portion; 3042 second folded portion; 3043 convex portion; 3044 concave portion; 4 water stopping cavity, 5 tension rope; 6 curved plate; 601 inner surface of curved plate; 602 outer surface of curved plate; 7 restraint strap; 8 first rod; 801 first end of first rod; 802 second end of first rod; 803 first edge; 804 second edge; 8041 second long hole; 9 limit device; 901 first hole; 902 head; 10 hanging structure; 101 first hanging structure; 102 second hanging structure; 103 third hole; 11 second rod; and 12 groove.
The technical solutions of the present application will be described in detail below in combination with specific embodiments. However, it should be understood that elements, structures and features in one embodiment may also be advantageously incorporated into other embodiments without further description.
In the description of the present application, it should be noted that terms such as “first” and “second” are used for descriptive purposes only, and cannot be understood as indicating or implying the relative importance, or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
In the description of the present application, it should be noted that the terms “up”, “down”, “inner”, “bottom” and the like indicate the positional or positional relationship according to the positional relationship shown in
In the description of the present application, it should be noted that the terms “connect”, “connecting” and “connected” should be understood in a broad sense unless otherwise clearly specified and limited. For example, they might be fixed connection, detachable connection, or integrated connection; might be direct connection or indirect connection through an intermediate medium, and might be internal connection of two elements. For those of ordinary skill in the art, the specific meanings of the above-mentioned terms in the present application can be understood under specific circumstances.
A conventional immersed tunnel is provided with a first joint segment 1 and a second joint segment 2 during joint construction, wherein the first joint segment 1 is a push-out segment, which can stretch out and draw back in the axial direction X, and the second joint segment 2 is an enlarged segment relatively fixed. As shown in
In a first embodiment of the present application, a water stopping device of suspension and sliding type (hereinafter referred to as the water stopping device) is provided, which can be used for waterproofing during the joint construction of an immersed tunnel.
As shown in
As shown in
As shown in
As shown in
Optionally, the water stop 3 is annular, and the curved plates 6 may adopt one or more ways in the following embodiments.
(1) The curved plate 6 is provided along the outer circumference of the folded portion 304 of the water stop to form an annular support ring, thereby forming an annular framework outside the water stopping cavity and greatly enhancing the support strength. This way is suitable for installing the curved plate 6 at the convex portion 3043 of the first folded portion 3041, as shown in
(2) The curved plate 6 is provided along the inner circumference of the folded portion 304 of the water stop to form an annular support ring, thereby forming an annular framework in the water stopping cavity and greatly enhancing the support strength. This way is suitable for installing the curved plate 6 at the concave portion 3044 of the first folded portions 3041.
(3) An elastic restraint strap 7 is provided along the outer circumference of the folded portion 304 of the water stop, so as to assist the water stop 3 to fold. This way is suitable for providing the restraint strap 7 around the concave portion 3044 of the second folded portion 3042, as shown in
(4) A plurality of curved plates 6 are spaced along the outer circumference of the folded portion 304 of the water stop, and are disconnected at outer corners of the water stopping cavity, and the elastic restraint strap 7 is provided at each outer corner to realize elastic restraint at the corners and form an integral support structure. This way is suitable for providing the curved plates 6 and the restraint straps 7 around the concave portion 3044 of the second folded portion 3042.
(5) A plurality of curved plates 6 are spaced along the inner circumference of the folded portion 304 of the water stop, and are disconnected at inner corners of the water stopping cavity, and the elastic restraint strap 7 is provided outside the water stopping cavity corresponding to each disconnection position (i.e., at each outer corner) to realize elastic restraint at the corners and form an integral support structure. This way is suitable for providing the curved plates 6 at the convex portion 3043 of the second folded portion 3042 and the restraint straps 7 at the concave portion 3044 of the second folded portion 3042, as shown in
As shown in
A first end 801 of the first rod is installed on the first joint segment 1 and can move with the first joint segment 1, while a second end 802 thereof is movably installed on the second joint segment 2. Preferably, as shown in
In an optional embodiment, as shown in
As shown in
Optionally, a first end of the first hanging structure 101 is connected to the water stop 3 through the support member. Specifically, when the support member is the curved plate 6, the first end of the first hanging structure 101 can be connected to the outer surface 602 of the curved plate, and the inner surface 601 of the curved plate is connected to the first folded portion 3041 of the water stop, so that the first hanging structure 101 is connected to the first folded portion 3041 of the water stop, specifically to the convex portion 3043 of the first folded portion. Optionally, the first hanging structure 101 may also be integrated with or rigidly connected to the curved plate 6, as shown in
Optionally, as shown in
As shown in
The first hanging structure 101 and the second hanging structure 102 is of the same structure or have certain similarities, which can be collectively referred to as the hanging structure 10. In the present embodiment, the first hanging structure 101 is mainly connected outside the water stopping cavity to the first rod 8 and the water stop 3, especially to the first folded portions 3041 of the water stop, and the second hanging structure 102 is mainly connected within the water stopping cavity to the second rod 11 and the water stop 3, especially to the second folded portions 3042 of the water stop.
When the first joint segment 1 is pushed out, both the first rods 8 and the second rods 11 can move synchronously with the first joint segment 1, and the water stop 3 can slide in suspension on the first rods 8 and the second rods 11 while moving, so as to keep away from the first joint segment 1.
In a second embodiment of the present application, an application of a water stopping device of suspension and sliding type is provided, and the water stopping device can be used for waterproofing during the joint construction of immersed tunnel. The water stopping device of suspension and sliding type is the water stopping device described in any of the preceding embodiments.
The embodiments are only described as preferred embodiments of the present application, and are not intended to limit the scope of the present application. Various modifications and improvements made on the technical solutions of the present application by ordinary skill in the art without departing from the design spirit of the present application shall fall within the protective scope confirmed by the claims of the present application.
The present application is a continuation of international application No. PCT/CN2021/141443, filed on Dec. 27, 2021, which claims the priority benefit of Chinese application No. 202111346603.3, filed on Nov. 15, 2021, entitled “water stopping device of suspension and sliding type and an application thereof” and Chinese application No. 202111347608.8, filed on Nov. 15, 2021, entitled “annular water stop construction method”, the entirety of the above identified applications is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4060993 | Shimizu | Dec 1977 | A |
4221502 | Tanikawa | Sep 1980 | A |
20180274197 | Lin | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
107190777 | Sep 2017 | CN |
107489169 | Dec 2017 | CN |
107653910 | Feb 2018 | CN |
107700537 | Feb 2018 | CN |
107700538 | Feb 2018 | CN |
107700541 | Feb 2018 | CN |
108240001 | Jul 2018 | CN |
108385728 | Aug 2018 | CN |
208363140 | Jan 2019 | CN |
209854769 | Dec 2019 | CN |
113309146 | Aug 2021 | CN |
9-203060 | Aug 1997 | JP |
Entry |
---|
International Search Report of PCT/CN2021/141443. |
Search Report of the priority application CN202111346603.3. |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/141443 | Dec 2021 | US |
Child | 18076243 | US |