WATER TANK FOR USE WITH A SOLAR AIR CONDITIONING SYSTEM

Abstract
A water tank for use in air-conditioning and/or heating systems and includes a container capable of storing at least one thousand gallons of a fluid. An evaporator coil is disposed within the container and the fluid contained within the container. The evaporator can consist as part of a refrigerant circuit. A pickup radiator coil is also disposed within the container and fluid. The pickup radiator coil can consist as part of a chilled water air conditioning water system for a dwelling. The water tank can be insulated. The fluid stored within said container can be a mixture of water and anti-freeze.
Description
FIELD OF THE INVENTION

The present invention relates generally to air conditioning systems and particularly to a solar air conditioning system.


BACKGROUND OF THE INVENTION

High electricity bills from air conditioning and/or heating use for a dwelling are common and reoccurring. Additionally, the manufacture of energy at a power plant causes pollution to be released in the air. Furthermore, electricity availability in undeveloped countries, as well as remote locations in developed countries, may be scarce, on limited basis or often non-existent. As a result, these locations are unable to store foods and liquids requiring refrigeration due to the lack of electricity. For undeveloped countries the lack of electricity is a factor in the poverty, hunger and lack of nourishment for its citizens. It is to these problems that the present invention is directed.


SUMMARY OF THE INVENTION

The present invention generally provide a solar air-conditioning system that is preferably designed to operate with concentrated solar heat supplemented with solar electric cells/battery and if necessary, power from an electric utility grid. The unit of heat added or subtracted is a British Thermal Unit (“BTU”), which is defined as the amount of heat to raise one pound of water one (1°) degree Fahrenheit. With excess capacity preferably designed in, unused BTUs can go into reserve for night and cloudy days. The present invention system can use a circulating refrigerant such as, but not limited to, Freon or ammonia in a cycle of compression and expansion. Solar concentrators can raise temperature and pressure of the refrigerant. The raised temperature can be dissipated to the atmosphere and the refrigerant proceeds to the evaporator coil. The evaporator can be located within a water tank containing an anti-freeze water solution. Preferably, the water tank contains at least approximately 1000 gallons of the anti-freeze water solution. The water is preferably the storage medium. Heat can be added to or extracted from the storage medium by the evaporator coil.


Preferably, also within the water tank can be a radiator type pickup coil. The pickup coil can be part of a separate chilled water system which can circulate its own water supply through radiators located throughout a building, dwelling, house, etc. (all collectively referred to as “dwelling”). The temperature within this separate system can be the temperature of the water within the tank by simple conduction.


The refrigerant system can include a supplemental compressor which can be electrically driven from one or more, and preferably a plurality or bank of solar electric cells or the power grid. The refrigerant system can also include one way direction positive displacement rotary valves which can serve to insure proper gas direction and can also provide a mechanical link to the energy in the refrigerant circuit. This mechanical link can be used to power a generator or a fluid pump. When in solar heat mode, certain bypass valves within the refrigerant system allow switching to solar heating. When in this mode the generator may be electrically switched to function as a motor to assist the circulation of the refrigerant.


The present invention can also be used for or applicable to large area coolers or refrigerators and provides a device which can provide refrigeration to areas where electricity is not present or available.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic/flow diagram of a first embodiment for the present invention system;



FIG. 2 is schematic/flow diagram of a portion of a second embodiment for the present invention system;



FIG. 3 is schematic/flow diagram of a portion of a third embodiment for the present invention system;



FIG. 4 is a detailed view of one bypass valve (which is used when switching to solar heat mode) that can be used in accordance with the present invention system,



FIG. 5 is a schematic of a first embodiment for an expansion valve that can be used in accordance with the present invention system;



FIG. 6 is a schematic of a second embodiment for the expansion valve in accordance with the present invention system;



FIG. 7 is a schematic of a third embodiment for the expansion valve in accordance with the present invention system;



FIG. 8 is a diagram for allowing a condenser coil of the present invention system to dissipate heat to water circulated over its surface;



FIG. 9 is a perspective view of a solar concentrator which can be used with the present invention system;



FIG. 10 is a perspective view of rotary valve that can be used with the present invention system;



FIG. 11 is a perspective view of the inner cylinder for the rotary valve FIG. 10;



FIGS. 12 through 16 illustrated alternative concentrators that can be used with the present invention system;



FIG. 17 illustrates a schematic/flow diagram of another embodiment for the present invention system; and.



FIG. 18 is an alternative embodiment for the water tank in accordance with he present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As seen best in FIG. 1 a solar air-conditioning system is illustrated and generally referenced as system 10. System 10 includes one or more solar concentrators 20 and preferably a plurality of concentrators 20 preferably arranged in a parallel configuration or communication with each other. Concentrator(s) 20 capture energy from the sun raising the temperature and pressure of the refrigerant within the pipe, tubing, plumbing, conduits, hoses, etc. (all collectively referred to as “pipe” or “piping”) at the focal point. Though not considered limiting, the refrigerant can be Freon or ammonia gas. All of the pipe, valves, components, etc. of the present invention are preferably connected to each other through conventional connectors, fasteners, etc.


The refrigerant within the pipe proceeds or otherwise travels to the one or more heat dissipaters, commonly known as condensers 30, which can be large area condensers. The number of condensers 30 can correspond to the number of concentrators provided for system 10. Condensers 30 dissipate heat from the heated refrigerant to the atmosphere. In one embodiment, condenser 30 can be approximately the size of its corresponding concentrator 20 in length and width and affixed to concentrator 20 with a spacing measurement between concentrator 20 and condenser 30 preferably within twelve (12″) inches of each other. However such spacing measurement is not considered limited to within twelve (12″) inches and other values can be used and are considered within the scope of the invention.


In an alternative embodiment, condenser 30 can be a single stand alone unit, which can include an electrically driven fan similar to conventional condensers. Thus, FIG. 1 illustrates multiple condensers, whereas FIG. 3 illustrates a single condenser coil 260.


After leaving condenser(s) 30, the refrigerant proceeds through a one direction valve 40. In a preferred embodiment, the one direction valve can be a “high side” positive displacement one direction rotary valve. Valve 40 assures that the refrigerant proceeds in the proper direction through the refrigerant circuit. As shown in FIG. 1, in one embodiment, a plurality of vanes are provided within the valve housing, which are moved by the circulating refrigerant (a portion of the refrigerant within the valve is shown in shading/hatched lines between two of the vanes). Valve 40 can also provide a mechanical link 60 to the energy produced by the moving refrigerant. The mechanical link can be used to drive a generator, water circulation pump and/or other device.


From valve 40, the refrigerant travels to an evaporator 80 which is preferably fitted with an expansion valve 90. In the preferred embodiment, expansion valve 90 can be an electronically controlled valve, though such is not considered limiting. FIGS. 5 through 7 provides further details on various non-limiting expansion valve embodiments that can be used with the present invention system or circuit.


Valve 90 is controlled based on the pressures contained within the refrigerant circuit which can vary as the solar energy varies. The expanding refrigerant within evaporator 80 removes the heat from the coil and medium surrounding evaporator 80. Preferably, evaporator 80 can be disposed within a water tank 100. Water tank 100 is preferably large enough in size to hold a large amount of a liquid, such as, but not limited to, approximately two thousand (2000) gallons of the liquid. However, other size water tanks can be used and are considered within the scope of the invention.


Preferably, the liquid 106 contained within water tank 100 can be a mixture of water and anti-freeze. Preferably, water tank 100 can be insulated, such as, but not limited to, burying water tank 100 beneath ground level. Additionally, water tank 100 can be greater in height than width to operate co-operatively with temperature stratification. As such, heat can be removed from many gallons of water, which a non-limiting example is shown by the following factoid using a non-limiting 2000 gallon water tank 100:


British Thermal Unit (“BTU”). 1 BTU=1 pound of water 1° F


Water=8 pounds per gallon; 1 cubic foot=7.4$ gallons 60 pounds of water.


134 cubic feet—8018 pounds of water.


Non-limiting Tank 100 dimensions: 4.2 ft×8 ft×8 ft=269 cu, ft=2000 gallons


2000 gallons 16,000 pounds 16,000 BTU per degree Fahrenheit.


32° F to 12° F=20° F


20° F×16,000 BTU=320,000 BTU


320,000 BTU/20,000 BTU hour=16 hours reserve.


Solar Power:


200 BTU/square foot/hour around solar noon.


20,000 BTU's per 100 square feet


40,000 BTU's per 200 square feet


Non-limiting Solar Concentrator 20 dimensions: each 2 ft.×10 ft. 20 square it


10 units=200 square ft=40,000 BTU/hour


The refrigerant exits from evaporator 80 and is directed to a second one directional valve 110, which again can be a positive displacement one direction rotary valve. Valve 110 can have a larger positive displacement chamber as compared to valve 40 since it may be working with lower pressures, and thus in the preferred embodiment, can be considered a low pressure valve. Valve 110 can also have a mechanical link 62 and can be (though not required) mechanically linked with valve 40, as illustrated in FIG. 1. By linking valves 40 and 110 together, stability can be provided to the refrigerant circuit. Furthermore, the rotation of valves 40 and 110 can derive rotational mechanical energy which can be utilized to drive a generator, water circulation pump, etc, and is illustrated with a generator or water pump 112. The vanes of valves 40 and 110 can be spring loaded.


The refrigerant then is directed from valve 110 to a preferably commonly connected balancing valve 120 and/or as an inlet to compressor 140. System balancing valve 120 can have a first inlet valve 122 which can constitute the primary circuit for the refrigerant and a second inlet valve 124 which is in communication with the outlet of compressor 140. Refrigerant travels through balancing valve 120 to one direction or one-way valve 150 where it proceeds to solar concentrator(s) 20 to restart the cycle.


Compressor 140 can be driven by a conventional compressor motor 144. Thus, when there is insufficient solar energy (cloudy day, etc.), system 10 (such as through one or more sensors provided in the circuit) can sense or otherwise determine to activate motor 144 to electrically drive compressor 140. In one non-limiting example, a temperature sensor can be disposed within the water tank for determining when to turn motor 1144 on. Additionally, pressure sensors or other devices can also be used for this purpose. Pressurized refrigerant from compressor 140 can proceed through second inlet valve 124 on the balancing valve to one direction valve 150. Where a temperature sensor is provided within water tank 100, compressor 140 can be activated at predetermine temperatures through its connection to a conventional switcher (not shown in FIG. 1 but can be similar to the switch control shown in FIG. 2). In one non-limiting example, the predetermined temperature can be anywhere in the range of about 32° F. to about 12° F. However, other temperature values can be used and are considered within the scope of the invention.


The present invention can store air conditioning energy in the form of chilled water, which can be below the freezing point of 32° F, and preferably within the temperature range of 32° F to 12° F or about 32° F to about 12° F. However, the present invention is not limited to this specific range and other ranges can be chosen and are within the scope of the invention.


Balancing valve 120 can be constructed such that there is linkage between first inlet valve 122 and second inlet valve 124. Thus, first inlet valve 122 can be closed, when the force of the pressurized refrigerant from compressor 140 opens second inlet valve 124. Similarly, when first inlet valve 122 is opened through receipt of refrigerant from valve 110, second inlet valve 124 can be closed. It is also possible and within the scope of the invention that both first inlet valve 122 and second inlet valve 124 are partially opened at the same time and the refrigerant traveling through both inlet valves (122 and 124) merges or combines and enters a single outlet which serves as the inlet to one way valve 150.


As seen in FIG. 1, water tank 100 also contains a pickup radiator 180 acting as heat exchange coil which functions as part of a separate chilled for heated) water system 175 of air-conditioning (heat) for withdrawing (or adding) heat from (or to) a dwelling or structure. through One or more radiators 190, Pickup radiator 180 in water tank 100 and one more radiators 190 disposed throughout the dwelling can circulate anti-freeze/water by Way of a pump 196, which can be electrically or mechanically driven, The circulation of the water allows heat to be removed from or added to (as desired) from the dwelling. The chilled (heated) liquid or water system in the preferred embodiment is separate and isolated from the storage medium liquid or water. One skilled in the art would include a control, such as a thermostatic control, at each dwelling coil controlling the cold water flow such that the freezing point is not attained in these coils.


The present invention system can also be converted or otherwise switch from solar air conditioner to solar heating. As seen in FIG. 2, system 250, which can contain similar not shown components as system 10, where a stand-alone (single) condenser 260 (FIG. 3) is used a bypass valve 270 (with associated pipe) can be provided at condenser 260. It should be recognized that multiple condensers, such as shown in FIG. 1, can also be used and each condenser can be provided with a bypass valve and associated pipe. By opening or otherwise engaging bypass valve 270 and electrically withdrawing the controlling element of the electronic expansion valve 90, the solar heated refrigerant is allowed to circulate through evaporator 80, which heats the water or mixture in water tank 100 by conduction. Generator 190, which can be commonly connected to rotary valves 40 and/or 110, can be electrically switched to function as a motor. The motor can drive rotary valves 40 and/or 110 to assure circulation of the heated refrigerant through the refrigerant circuit.


Bypass valve 270 is shown in more detail in FIG. 4. A housing 271 with inlet port 273 and outlet port 275 is shown. Actuator solenoid 277 controlling a piston 279 dictates the travel route of the refrigerant by opening or closing appropriate ports depending if the system is being used for air conditioning or for heating purposes. However, other types of bypass valves can be used with the present invention system or circuit and are also considered within the scope of the invention.


As the heat of the refrigerant has not been dissipated through a condenser, the refrigerant warms water or mixture in tank 100, which in turn causes the liquid/water in pickup radiator 180 to be heated and then dispersed through system 175 by pump 196 as described above.


As seen in FIG. 2, the present invention system can also be complemented with solar electric panels 300 and battery 320. Electricity derived from this sub-system can drive compressor 140. The energy from concentrator(s) 20 and the solar electric can compliment each other to drive the refrigerant within the circuit. Additionally, at times of insufficient solar energy or battery energy, power from a utility grid 370 can supply the energy to drive compressor 140. A switching control 324 can he provided for managing or controlling the various energy sources. Thus, the various components help to drive compressor 140 when needed, which can he considered, though not required, a supplement mode of energy.


It should be recognized that various combinations of concentrator(s), battery(ies), utility grid (conventional electricity), solar panel(s), etc. can be used and all combinations are considered within the scope of the invention. Thus, as non-limiting examples, the complimentary system does not necessarily preclude (1) a system which operates solely on energy from solar concentrators, excluding solar electric; or (2) a system which operates solely on solar electric panels, excluding solar concentrators. Again, the above-described energy sources can be used in various combinations or by themselves and all variations are considered within the scope of the invention.



FIGS. 5 through 7 illustrate several embodiments for the expansion valve component of the present invention. The primary function of the expansion valve is to meter pressurized gas (high side) into the evaporator (low side) allowing expansion of the gas and corresponding heat absorption. Conventional expansion valves operate with a constant known pressure. However, with the present invention system it is preferred that the expansion valve operate over a range of pressures as solar energy will vary. Thus, different types of novel designs for the expansion valve can be used and incorporated into the present invention system where the expansion valve can be controlled according to pressures on the high side and on the low side within the refrigerant circuit.


As seen in FIG. 5, an expansion valve 110 is shown and can be controlled by sensing refrigerant which has been compressed to a liquid state, and acting at that point to control the expansion valve to open slightly to allow a greater flow and thus reducing the pressure in the evaporator.


As seen in FIG. 6, an expansion valve 200 is shown and can have a pressure sensing diaphragm 202 connected to a control element 203 of expansion valve 200. The active chamber of the diaphragm 202 can be connected to evaporator 80, such as, but not limited to, through a suitable conduit (i.e. pipe 204). Diaphragm 202 can be connected to control element 203 through a leverage bar 205 and a spring 206. Spring 206 has increasing, tension with compression. In operation, as gas pressure in the high side 207 of the refrigerant circuit rises, valve control element 203 is raised and thus overcoming the spring tension and allowing passage of the refrigerant. As pressures begin to rise in the evaporator, diaphragm 202 moves to close control element 203 and thus blocks or limits passage of the refrigerant. As such, control element 203 meters the flow of has according to the pressure in the evaporator. With even higher pressures diaphragm 202 limit will be reached and spring tension will maintain the restrictive pressure on valve control element 203. Spring 206 can be gradually increasing pressure with compression.


As seen in FIG. 7, an expansion valve 350 is shown and controls its control element 203 through the use of an electrically drive linear motor 301. Control of valve element 203 is again according to pressures within the refrigerant circuit and particularly on the high side before expansion valve 300 and after the valve within evaporator 80. Valve 300 can include an electrical potentiometer combined with a mechanical pressure sensor and is shown in FIG. 7 as a pressure diaphragm 302 with associated potentiometer 303. As the circuit of FIG. 7 reacts to changing pressure the wiper/arrow moves along the resistive element of the potentiometer to vary the resistance.


Though in the preferred embodiment the chilled water system can be an isolated closed system with a pickup coil in the water tank, such is not considered limiting, it is also within the scope of the invention to have the present invention operate with no pickup coil within the tank. Such an alternative version could operate circulating the storage medium water within the water through the in-dwelling radiators.



FIGS. 10 and 11 illustrates a rotary valve 400 that can be used with the present invention system as such as valve 40 and/or valve 110 shown in FIG. 1. Valve 400 comprises an outer cylindrical valve body housing 402 having an inlet port 404 and an outlet port 406. Preferably, outlet port 406 can be preferably at least one-hundred (100°) degrees in direction of rotation from inlet port 404 in a four (4) vane configuration and correspondingly so with multiple vanes. An inner rotational cylinder 420 is disposed within housing 402 and can be supported by a center longitudinal shaft 422 offset from the center of outer housing 402. A plurality of vanes 424 (preferably spring loaded) are fitted into cylinder 420. Vanes 424 are disposed along the longitudinal axis of cylinder 420 and preferably equally spaced from each other around the circumference of cylinder 420. As seen in the FIG. 10, inner cylinder support shaft 422 can extend beyond valve housing 402 such that external appliances can be attached thereto. A portion of cylinder 420 is flush against the inner wall of housing 402 such that vane 424a is fully compressed. As a gap is created between the portion of cylinder 420 associated with vane 424b and housing 402, vane 424b protrudes outward from cylinder 420, in view of its preferred spring loaded configuration.


Fundamental to the “refrigeration” or “heat pump” cycle is a dissipation of the heat of compression. This is usually accomplished by circulating the compressed refrigerant gas through a finned, coil exposed to the atmosphere (i.e. a condenser coil). It may be a large area condenser to dissipate heat by simple conduction (FIG. 1, #30) or it may be smaller and compact with fan forced air circulation (FIG. 3).


Another embodiment or method that can be used with the present invention system is illustrated in FIG. 8, in this method, condenser coil 30 may dissipate heat to water circulated over its surface. The water can be drawn by a pump from an underground water table. The underground water temperature can be approximately twenty-five (25° F) degrees Fahrenheit cooler than the atmosphere. Other degree differences can also be selected and are considered within the scope of the invention. Thus, the efficiency of the heat dissipation and of the overall cooling is enhanced. This method might circulate water from the water table. Alternatively, water can be sprayed as a mist onto the condenser in its own external evaporation cycle of liquid to gas.


It should be recognized that other concentrators can be used with the present invention system and all are considered within the scope of the invention. Certain examples of concentrators are generally shown in the Figures but are not considered to limit the types of concentrators that can be used and incorporated into the present invention system.



FIG. 12 is a perspective view of a dish concentrator 500 that can be used with the present invention system. FIG. 13 is a partial cutaway perspective view of a ceramic coil pickup unit 502 of dish concentrator 500 illustrating the internal ceramic spiral coil. FIG. 14 is a perspective view of a solar receiver and heat-engine housing collectively referenced at numeral 520. FIG. 15 illustrated a parabolic trough concentrator 530 and FIG. 16 illustrates a Fresnel lens concentrator 540.


The above-described and illustrated rotary positive displacement valves provide a unique valve design which can be advantageously optimized for the instant invention system. The movement under pressure of a gas or liquid, such as, but not limited to, a refrigerant in liquid or gas form, causes the rotation of the valve. Preferably composed of four chambers in a four vane version, each vane chamber successively is filled and caused to rotate by the high side pressure on that chamber vane. The chamber is then closed by the following vane and finally emptied as such chamber is decreased in volume due to the preferred offset center, the point of co-incidence of the inner cylinder rotor and the vane and placement of the exit port. The valves of the present invention are driven by the pressure of the heated gas. Preferably, two valves are connected together, with the high side and the low side all given stability to the refrigerant movement through the circuit. In solar heat mode, the valves may be motor driven to promote circulation of the heated refrigerant. The valves do not compress in either the solar air conditioning mode or the solar heat mode.


Thus in one embodiment, a rotational multi-vane positive displacement valve is disclosed which can comprise: an outer cylindrical valve body housing having an inlet port. and an outlet port and an inner rotational cylinder disposed within the outer cylindrical valve body housing and supported by a longitudinal shaft offset from a center position of the outer housing. The inner rotational cylinder can have a plurality of spring loaded vanes along a substantial portion of its longitudinal axis that are preferably equally spaced around a circumference of the inner rotational cylinder. The outlet port can be located at least 100 degrees in direction of rotation from the inlet port, when the inner cylinder has four vanes. The shaft preferably extends beyond the outer valve housing and can be adapted for attachment to external appliances.


Thus, summarizing the present invention provides a solar air-conditioning system that is preferably designed to operate with concentrated solar heat and uses a circulating refrigerant in a cycle of compression and expansion. Solar concentrators raise the temperature and pressure of the refrigerant. The raised temperature is dissipated to the atmosphere and the refrigerant proceeds to the evaporator coil, which is located within a water tank containing at least 1000 gallons of an anti-freeze water solution. As the water is the storage medium, heat can be added to or extracted from the storage medium by the evaporator coil. A radiator pickup coil is also located within the water tank and is part of a separate chilled water system which can circulate its own water supply through other radiators located throughout a dwelling. Additionally, one or more bypass valve(s) within the refrigerant system allow switching to solar heating.


The above-described systems of the present invention can also be used for or applicable to large area coolers or refrigerators and provides a device which can provide refrigeration to areas where electricity is not present or available.


As seen in FIG. 18 the second pickup coil 180 from earlier embodiment has been eliminated at the bottom of tank 100. in conjunction with water pump 196 and inlet 197, the tank water itself is circulated throughout the dwelling associated with the present invention system and then returned to tank 100 through outlet 107.


The invention provides for cold (water) energy attributes which can be used for efficient operation of a solar air conditioning system. The present invention tank permits continued operation of the solar air conditioning system even during periods of intermittent solar energy, In a preferred embodiment, a large quantity of water (1000 gallons or more) can be used, preferably coupled with temperatures well below the freezing point (anti-freeze mixture) of water to permit the operation of the solar air-conditioning system well beyond the hours of available solar energy. The temperature and quantity of the water can be designed such that they become factors that affect the practical operation of the entire solar air-conditioning system.


The present invention tank can use very low temperatures preferably well below the freezing point of water. The below freezing storage feature helps to prevent having to throttle back to limit temperatures above freezing, which would mean not efficiently using all of the solar energy available for the operation of the solar air-conditioning system. The invention also preferably uses an anti-freeze such that the water preferably never reaches a frozen state. Therefore, so long as the refrigerant cycle continues ever more BTUY's are stored for later use by the present invention.


The invention can also use water in the secondary stem (pickup radiator coil), Another benefit of the invention is that water and anti freeze are relatively inexpensive and the tank itself has a minimal complexity.


All measurements, dimensions, amounts, angles, values, percentages, materials, degrees, product configuration, orientations, product layout, component locations, sizes, number of sections, number of components or items, etc, discussed above or shown in the Figures are merely by way of example and are not considered limiting and other measurements, dimensions, amounts, angles, values, percentages, materials, degrees, product configuration, orientations, product layout, component locations, sizes, number of sections, number of components or items, etc, can be chosen and used and all are considered within the scope of the invention.


While the invention has been described and disclosed in certain terms and has disclosed certain embodiments or modifications, persons skilled in the art who have acquainted themselves with the invention, will appreciate that it is not necessarily limited by such terms, nor to the specific embodiments and modifications disclosed herein. Thus, a wide variety of alternatives, suggested by the teachings herein, can be practiced without departing from the spirit of the invention, and rights to such alternatives are particularly reserved and considered within the scope of the invention.

Claims
  • 1. A water tank for use in air-conditioning or heating system, comprising: a container storing at least one thousand gallons of a fluid;an evaporator coil disposed within the container and fluid, said evaporator consisting as part of a refrigerant circuit; anda pickup radiator coil disposed within the container and fluid, said pickup radiator coil consisting as part of a chilled water air conditioning water system for a dwelling.
  • 2. The water tank of claim 1 wherein said container is insulated.
  • 3. The water tank of claim 1 wherein said fluid stored within said container is a mixture of water and anti-freeze.
  • 4. The water tank of claim 2, wherein said container is insulated by burying the container beneath ground level.
  • 5. The water tank of claim 1 wherein said container is greater in height than width.
  • 6. The water tank of claim 1 wherein said container storing, about 2000 gallons of fluid.
  • 7. The water tank of claim 1 further comprising a temperature sensor disposed within said container for determining when to turn on a compressor motor component of the air conditioning system,
  • 8. The water tank of claim 1 wherein said water contained within the container is stored within a temperature range of about 32° F to about 12° F.
  • 9. The water tank of claim 1 further comprising art amount of water stored within the pickup radiator coil which is chilled by the temperature of the water stored by said container.
  • 10. The water tank of claim 9 wherein the amount of water stored within the pickup radiator coil is isolated from and does not contact the water stored by said container.
  • 11. A water tank for use in air-conditioning or heating system, comprising: an insulated container storing at least one thousand gallons of a fluid comprised of a mixture of water and anti-freeze, said container greater in height than width;an evaporator coil disposed within the container and fluid, said evaporator consisting as part of a refrigerant circuit; anda pickup radiator coil disposed within the container and fluid, said pickup radiator coil consisting as part of a chilled water air conditioning. water system fur a dwelling;wherein said water contained, within the container is stored within a temperature range of about 32° F to about 12° F.
  • 12. The water tank of claim 11, wherein said container is insulated by burying the container beneath ground level.
  • 13. The water tank of claim 11, wherein said container storing about 2000 gallons of the fluid.
  • 14. The water tank of claim 11 further comprising an amount of water stored within the pickup radiator coil which is chilled by the temperature of the water stored by said container; wherein the amount of water stored within the pickup radiator coil is isolated from and does not contact the water stored by said container.
  • 15. The water tank of claim 11 further comprising a temperature sensor disposed within said container for determining when to turn on a compressor motor component of the solar air conditioning system.
  • 16. A water tank for use in an air-conditioning or heating system, comprising: a container sized to store about one thousand gallons or more of a fluid;about one thousand gallons or more of a mixture of water and anti-freeze disposed within said container, said container greater in height than width;an evaporator coil disposed within the container and fluid, said evaporator consisting as part of a refrigerant circuit;a first piping member having an inlet and at least partially disposed within the container, said first piping member inlet serving as the water entry point for a chilled water air conditioning system for a dwelling;a second piping member having an outlet and at least partially disposed within the container, said second piping member serving as the container return point for the water circulated through the air conditioning system; anda water pump for circulating the water entering, the air conditioning system from the container through the first piping member inlet.
  • 17. The water tank of claim 16, wherein said container is insulated by burying the container beneath ground level.
  • 18. The water tank of claim 16, wherein said container sized to store about 2000 gallons of the fluid.
  • 19. The water tank of claim 16, wherein said water contained within the container is stored within a temperature range of about 32° F to about 12° F.
  • 20. The water tank of claim 16 further comprising a temperature sensor disposed within said container for determining when to turn on a compressor motor component of the air conditioning system.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 13/786,579, filed Mar. 6, 2013, which is a continuation of U.S. application Ser. No. 12/945,937, filed Nov. 15, 2010, which is a continuation-in-part of U.S. application Ser. No. 12/249,201, filed Oct. 10, 2008, which is a continuation of U.S. application Ser. No. 12/249,071, filed Oct. 10, 2008, which is a continuation-in-part of U.S. application Ser. No. 11/671,547, tiled Feb. 6, 2007, now U.S. Pat. No. 7,451,611, issued Nov. 18, 2008, which claims the benefit of and priority to U.S. Application Ser. No. 60/853,531, filed Oct. 23, 2006. All above-identified applications are incorporated by reference in their entireties as if fully set forth herein.

Continuations (2)
Number Date Country
Parent 13786579 Mar 2013 US
Child 13912783 US
Parent 12945937 Nov 2010 US
Child 13786579 US
Continuation in Parts (3)
Number Date Country
Parent 12249071 Oct 2008 US
Child 12945937 US
Parent 12249201 Oct 2008 US
Child 12249071 US
Parent 11671547 Feb 2007 US
Child 12249201 US