WATER TRANSPORTATION SYSTEM

Information

  • Patent Application
  • 20200087894
  • Publication Number
    20200087894
  • Date Filed
    September 18, 2018
    6 years ago
  • Date Published
    March 19, 2020
    4 years ago
  • Inventors
    • Liang; Jikai
Abstract
A water transportation system may include one or more water pumps and a water pipeline to transport water from a starting point located at a certain height on an obstacle to a lower destination on the other side of the obstacle. The pump can be located at the top of the obstacle to fill the pipeline with water after pumping for a predetermined of time before being turned off, and the water can still continuously flow to the destination by force of gravity acting on the water in the segment of the pipe that extends from the peak point to the destination point to enable water transportation over the obstacle by taking advantage of both the action of gravity on the water flowing downward in the pipe and of the vacuum that is created in order to cause the water to flow continuously from the starting point to the destination.
Description
FIELD OF THE INVENTION

The present invention relates to a water transportation system, and more particularly to a water transportation system to overcome obstacles such as mountains, hills, etc.


BACKGROUND OF THE INVENTION

Technological advances in the modern age include the development and construction of water transportation infrastructures. Water transportation infrastructures that exist today can be either small scale or large scale. A large scale water transportation infrastructure can refer, for instance, to the transportation of water from the water source area such as lakes, rivers, reservoirs, etc. to remote areas for agricultural, industrial and domestic use. In many places throughout the world, such infrastructures are designed to transport water over distances of hundreds and even thousands of kilometers. Existing water transportation infrastructures are essentially based on three following components: reservoirs, piping, and water pumps. In most cases, the route along which the water is transported is not straight but includes obstacles such as mountains, hills, cliffs, etc., which require to lift the water to a higher place through a pump and then letting the water flow to a lower place with the force of gravity.


When the water transportation route is especially long, it may include a significant number of such obstacles stated above. In other words, when water is transported from starting point to its final destination, it is customary to lift the water to the top of the obstacle and let it flow downwards, over and over again for each height obstacle along the route, until the final destination. It happens, not infrequently, that there no height differential exists, or that only a relatively small height differential exists, between the water transportation's starting point and its final destination. In addition, due to the need to overcome obstacles such as mountains, hills, etc., a great deal of energy is spent on lifting the water to the top of each obstacle.


Moreover, the water can be lifted at the starting point to the reservoir located at the nearest peak along the route using water pumps, which may be operated in a variety of methods, such as pressure, compression, vacuum, etc., and may require high and expensive electrical capacities. The electrical consumption of the water pumps sometimes amounts to several percent of the electrical consumption of the entire country. Therefore, there remains a need for a new and improved method and system for water transportation to overcome the problems stated above.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide a water transportation system that enables the water to transport over high obstacles, such as mountains, hills, cliffs, etc.


It is another object of the present invention to provide a water transportation system to transport water over high obstacles in an energy-efficient manner.


In one aspect, a water transportation system in the present invention is configured to transport water from a water source to a reservoir (250) located on the other side of the obstacle such as a mountain, a hill, etc. The water transportation system may include one or more pumps and a water pipeline from the water source to the reservoir. In one embodiment, the system may have one pump positioned near the top of the hill. Alternately, the system may have another pump positioned near the water source as an auxiliary pump and the pump located near the top of the hill. It is noted that when the pump at hill top is turned on, it can pump water from the water source, through the water pipeline to the top of the hill at point B, and the water can then flow down to the reservoir by the force of gravity without any assistance of the pumps. In other words, no electricity is needed to transport the water from the hill top to the reservoir. The water can be further transported to another downhill reservoir by the force of gravity.


More specifically, after a predetermined time period during which the pump at hill top operates, the water pipeline becomes completely full of water, and according to a physical principle, when the action of the pump is stopped, water can continuously flow from the reservoir at the starting point to the hill top and then to the reservoir (on the other side of the hill), due to the force of gravity acting on the water in water pipeline from the top of the obstacle to the reservoir.


The present invention is advantageous because the water transportation system can be implemented in any case in which a height obstacle exists, which can be a mountain, a cliff, a hill, a wall, a building or any other kind of obstacle of any size by taking advantage of both the action of gravity on the water flowing downward in the pipe and of the vacuum that is created in order to cause the water to flow continuously from the starting point to the destination point.


It is important to note that implementing the water transportation system does not require that the reservoir be lower than the starting point during the water pumping process. Similar to the water transportation system in previous embodiment, the water can be pumped from the reservoir at the starting point A (lower than the reservoir on the other side) to the top of the obstacle at point B, and the water can flow down to the reservoir on the other side of the obstacle by the force of gravity without the assistance of the pumps. In one embodiment, an auxiliary pump may be disposed at the starting point to assist the water pumping process. The water can then be transported from the starting point to the reservoir on the other side even though the pump at hill top is turned off after pumping for a predetermined period of time and the water from starting point can continuously flow to the hill top without the operation of the pump.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of the water transportation system in the present invention.



FIG. 2 is a schematic view of another aspect of the water transportation system in the present invention.



FIG. 3 is a schematic view of a further aspect of the water transportation system in the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The detailed description set forth below is intended as a description of the presently exemplary device provided in accordance with aspects of the present invention and is not intended to represent the only forms in which the present invention may be prepared or utilized. It is to be understood, rather, that the same or equivalent functions and components may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described can be used in the practice or testing of the invention, the exemplary methods, devices and materials are now described.


All publications mentioned are incorporated by reference for the purpose of describing and disclosing, for example, the designs and methodologies that are described in the publications that might be used in connection with the presently described invention. The publications listed or discussed above, below and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.


As used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes reference to the plural unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the terms “comprise or comprising”, “include or including”, “have or having”, “contain or containing” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. As used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


In one aspect, as shown in FIG. 1, a water transportation system in the present invention is configured to transport water from a starting point A, water source (100), to a reservoir (250) located on the other side of the obstacle such as a mountain, a hill, etc. The water transportation system may include one or more pumps and a water pipeline (10) from the water source (100) to the reservoir (250). In one embodiment, the system may have one pump 2 positioned at point B near the top of the hill. Alternately, the system may have a pump 1 positioned near the water source (100) as an auxiliary pump and the pump 2 located near the top of the hill. It is noted that when the pump 2 is turned on, the pump 2 can pump water from the water source (100) at point A, through the water pipeline (10) to the top of the hill at point B, and the water can then flow down to the reservoir (250) by the force of gravity without any assistance of the pumps. In other words, no electricity is needed to transport the water from point B to the reservoir (250). The water can be further transported to another downhill reservoir (300) by the force of gravity.


More specifically, after a predetermined time period during which the pump (2) operates, the water pipeline (10) becomes completely full of water, and according to a physical principle, when the action of the pump (2) is stopped, water can continuously flow from the reservoir (100) at point A to point B and to the reservoir (250), due to the force of gravity acting on the water in water pipeline (10R) from the top of the obstacle to the reservoir (250). Since the mass of the water in the water pipeline (10R) is greater than that of the water in the water pipeline (10L), the water has inertia as it flows from the reservoir (100) at point A to the reservoir (250) even though the water pump 2 is turned off.


The present invention is advantageous because the water transportation system can be implemented in any case in which a height obstacle exists, which can be a mountain, a cliff, a hill, a wall, a building or any other kind of obstacle of any size by taking advantage of both the action of gravity on the water flowing downward in the pipe and of the vacuum that is created in order to cause the water to flow continuously from the starting point to the destination point.


It is important to note that implementing the water transportation system does not require that the reservoir be lower than the starting point during the water pumping process. As shown in FIG. 2, the starting point A for the water pumping process is lower than the reservoir (250) due to the topography of the land. Similar to the water transportation system in previous embodiment, the water can be pumped from the reservoir (100) at the starting point A to the top of the obstacle at point B, and the water can flow down to the reservoir (250) by the force of gravity without the assistance of the pumps. In one embodiment, an auxiliary pump (1) may be disposed at the starting point A to assist the water pumping process. The water can then be transported from point A to the reservoir (250) even though pump 2 at point B is turned off after pumping for a predetermined period of time and the water from point A can continuously flow to point B without the operation of the pump.


In a further aspect, as shown in FIG. 3, the water can be transported across multiple obstacles. More specifically, the water can be pumped from reservoir (100) at point A through the operation of the pump 2 at the top of the first obstacle at point B. The auxiliary pump (1) at point A may be used to assist the water pumping process. The water can then flow downhill to the reservoir (250) by the force of gravity without the operation of any pumps and travel to the lowest point C. Meanwhile, a pump 3 at the top of the second obstacle at point D can start the water pumping process to pump the water from point C to point D, and the water can again flow downhill to a reservoir (350) without the operation of the pumps.


Having described the invention by the description and illustrations above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Accordingly, the invention is not to be considered as limited by the foregoing description, but includes any equivalent.

Claims
  • 1. A water transportation system to transport water from a starting point located at a certain height to a destination point that is lower than the starting point and located on the other side of a height obstacle comprising a first pump located at a relative higher position than the destination point, a first pipe to connect the starting point with the first pump and a second pipe to connect the first pump to the destination point, wherein the water is pumped from the starting point in such a way to fill the first pipe and the water continues to flow from the said starting point to the said destination point even the first pump is stopped to enable the water to be transported over the height obstacle by taking advantage of both the action of gravitational forces on the water flowing downward in the pipe and of the vacuum that is created in order to cause water to flow continuously from the starting point to the destination point.