This invention relates generally to amusement watercraft, and in particular to a passenger boat ride in which passenger boats are propelled along a submerged guide channel from a ground level launch or from an inclined launch across or around a watercourse.
Amusement parks and theme parks such as Six Flags Over Texas, Opryland U.S.A., Cedar Point, Carowinds, Busch Gardens, Geauga Lake, Elitch Gardens and many others feature various watercraft rides that are guided safely through natural and man-made waterways. Some watercraft rides that are currently popular include a floating gardens ride, a river rapids ride, a log flume ride and a mill chute ride.
In a typical watercraft ride, a passenger boat is guided along a water channel from a passenger loading station to one or more intermediate stations and back to the passenger loading station. Such boats are usually propelled in part by water currents, gravity or passenger manpower, although some are propelled by motor-driven chains. Generally, variations such as music, sound effects, lighting effects, stage props and costumed characters enhance the entertainment value of the ride.
Some dominant concerns in the operation of such rides include the creation of a sense of fun and excitement while maintaining passenger safety, reliable equipment operation and expedited handling of passengers during loading and off-loading.
Conventional watercraft amusement rides are described in the following patents:
These patents disclose various watercraft amusement rides in which a passenger boat is propelled through a flume or guided down an inclined launch, and then recovered. For example, U.S. Pat. No. 849,970 discloses an inclined launch in which a pair of passenger boats is winched up dual tracks by sprocket-driven chains, is reversed on a turntable and then permitted to descend the launch by the force of gravity along the inclined tracks into a splash lake. The boats are guided by wheels along the guide tracks during descent.
U.S. Pat. No. 3,830,161 discloses a flume boat ride having dual launch chutes that guide amusement boats through a shallow body of water. A similar boat ride is shown in U.S. Pat. No. 3,404,635 in which a pair of passenger boats is guided from an elevated passenger loading station along dual tracks into a waterway.
U.S. Pat. No. 4,392,434 discloses an amusement boat ride in which a passenger boat is pulled by a chain drive to a launch station above a turbulent waterway. The passenger boat is then released from the chain drive and travels by gravity on guide wheels that roll along a guide track.
Conventional watercraft rides as exemplified by the patents discussed above broadly disclose the concept of guiding one or more amusement boats from an elevated launch into a waterway.
The operators of amusement parks are constantly striving to provide safe, yet thrilling and entertaining boat rides. Accordingly, there is a continuing interest in providing novel watercraft rides that offer passengers a memorable and exciting ride experience under closely controlled, safe operating conditions.
The amusement boat ride according to a first embodiment of the present invention is a simulated boat race in which pairs of racing boats compete in forward and return heats. Novel combinations of sudden acceleration/deceleration, high velocity travel, reversal of movement, exposure to lighting effects, sound effects, water spray and group competition provide a sense of excitement and fun. The passengers of each boat are subjected to high launch velocity, high speed hydroplaning across a splash lake, and giant water spray rooster tails that, in the spirit of good fun, spray onto passengers of the competing boat as well as onto nearby spectators. The passenger boats are propelled along parallel guide channels from one launch station to the other by linear induction motor that are structurally integrated with the passenger boat undercarriage and the submerged guide channels.
According to an alternative amusement ride of the present invention, pairs of passenger boats are launched from a first pair of inclined launch ramps and are propelled by linear induction motors along guide rails into a shallow splash lake. The passenger boats are then accelerated along the parallel guide channels by the linear induction motors so that the boats hydroplane across the splash lake. The linear induction motors propel the passenger boats partially up a second pair of inclined launch ramps on the opposite end of the splash lake to a predetermined return launch elevation.
Upon reaching the return launch elevation, the direction of thrusting force is reversed and the passenger boats are propelled rapidly down the inclined launch ramps with the passengers facing away from the direction of return travel. The passenger boats are then propelled along the guide channels across the shallow splash lake at hydroplaning speed, followed by coasting at a reduced speed to the passenger loading station.
In each embodiment, the passenger boats are stabilized by centering wheels and guide rollers that travel along submerged rails that run in parallel along the guide channels. In one arrangement, the linear induction motors include stators that are mounted laterally offset from the guide rails and in tandem relation with each other along opposite sides of each guide channel. In another arrangement, the linear induction motor stators are mounted on the rail support structure and vertically offset and centered beneath the undercarriage assembly in tandem relation with each other along the rail guide structure. In this arrangement, a reaction plate is attached to the undercarriage assembly and projects vertically into the stator flux slots.
Each linear induction motor includes a stator having a linear magnetic flux slot for receiving a reaction plate. The passenger boat is attached to an undercarriage assembly that is movably coupled to the guide rails by the centering wheels and rollers. Two reaction plates are attached to the undercarriage assembly and project laterally into the stator flux slots. Each stator, when energized with AC electrical current, produces electromagnetic flux waves that travel longitudinally through each flux slot. The electromagnetic forces imposed on the reaction plates produce linear thrust which drives the undercarriage assembly and passenger boat along the guide rails.
The accompanying drawing is incorporated into and forms a part of the specification to illustrate the preferred embodiments of the present invention. Throughout the drawing, like reference numerals designate corresponding elements. This drawing, together with the description, serves to explain the principles of the invention and is only for the purpose of illustrating exemplary embodiments showing how the invention can best be made and used. The drawing should not be construed as limiting the invention to the illustrated and described embodiments. Various advantages and features of the invention will be understood from the following detailed description taken in connection with the appended claims and with reference to the attached drawing in which:
Preferred embodiments of the present invention are described herein by referring to various examples of how the invention can be made and used. Like reference numerals are used throughout the description and several views of the drawing to indicate like or corresponding parts.
In the description which follows, like parts are marked through the specification and drawings with the same reference numerals, respectively. The drawing figures are not necessarily to scale, and the proportions of certain parts have been exaggerated for sake of clarity.
Referring now to
The racing boats are held steady at the return launch station 38 during a second heat countdown, and then are suddenly accelerated by the second set of linear induction motors along the guide channels 24, 26 into the shallow splash lake L in the reverse (return) direction to the second heat finish line 40. The winning time of the second heat is then announced and displayed. The passengers remain facing the return launch station (opposite to the direction of return travel) during the return heat as the racing boats hydroplane across the splash lake, thus permitting the passengers to watch closely as both boats generate the giant water spray rooster tails.
The racing boats 10, 12 are propelled along the parallel guide channels 24, 26 by the linear induction motors 14, 16 that are magnetically coupled to each racing boat, respectively, by laterally projecting reaction plates or fins 42, 44 (
When the magnetically conductive reaction plates are present in the flux slots, currents are induced in the reaction plates and produce a reaction flux wave of the same magnetic polarity as the stator flux wave. The reaction wave forces the reaction plate in the same direction as the stator flux wave is traveling. The interaction of the stator and reaction plate flux waves produce forces in the longitudinal direction and in the normal direction. The longitudinal thrust force moves the reaction plate in direction of the traveling flux wave. The normal force levitates the reaction plate. As a result, the reaction plate achieves equilibrium velocity when the thrust exerted on it by the traveling flux wave is balanced by the restraining drag load imposed by the undercarriage and the passenger boat.
The linear induction motors maintain positive control of the speed and relative positions of the racing boats during acceleration and braking. The dual launch stations 22, 38 on opposite ends of the shallow splash lake L permit the passengers to experience rapid acceleration and hydroplaning across the splash lake at a high speed to the forward heat finish line 28, followed by hydroplaning across the splash lake at a high speed in the reverse (return) direction to the return heat finish line 40, with the boats being guided along parallel rails 46, 48 and 50, 52 during both heats.
Prior to the start of the first heat, the passengers are loaded onto the racing boats 10, 12 from a ground level staging platform P. After passenger loading has been completed, the racing boats 10, 12 are held in launch pens 22A, 22B at the forward launch station 22 during the forward heat countdown. Upon launch, the racing boats are accelerated along the guide channels 24, 26 by the linear induction motors 14, 16 and 18, 20. As the racing boats exit the forward launch, they hydroplane across the shallow lake L at a high speed, for example 40 miles per hour, thus creating giant water spray rooster tails as they approach the forward heat finish line 28.
After the racing boats 10, 12 cross the forward heat finish line, the linear induction motors 30, 32 and 34, 36 continue to drive the racing boats at a reduced (coasting) speed, for example 5 m.p.h., along the drive channels to the return launch station 38 on the opposite end of the splash lake. The racing boats are held in launch pens 38A, 38B during a second heat countdown and then are accelerated rapidly along the guide channels while the passengers remain facing the return launch station so that they can observe the water spray rooster tails. The racing boats 10, 12 hydroplane across the shallow lake at a high speed, for example 40 mph, to the return heat finish line 40. The racing boats are then propelled by the linear induction motors 14, 16 and 18, 20 at a coasting speed, for example 5 m.p.h., to the staging platform P where the passengers are off-loaded and new passengers are admitted for the next race.
Hydraulically actuated turntables T are submerged in the launch pens 22A, 22B and 38A, 38B. When actuated, the turntables T elevate the passenger boats above the deck surfaces of the loading platforms 22, 38 and turn the passenger boats through 180 degrees so that the passengers are facing in the direction of travel during the return heat.
Preferably, each heat of the simulated boat race is accompanied by giant voice (public address) messages announcing departure, countdown, timing lights that indicate various stages during the countdown and loud warning signals prior to launch. Synchronized sound effects and flashing light effects accentuate the acceleration of the launch. Compressed steam is released at each launch station as the racing boats initially accelerate across the splash lake. An electronic scoreboard flashes the winning time as the racing boats are guided under linear induction motor control to each launch station. The special effects are repeated as the racing boats are propelled from the return launch station to the second heat finish line 40.
Referring now to
Lateral movement of each racing boat is opposed by the centering wheels 58 and vertical movement is opposed by the centering wheels 54, 56. As shown in
The guide rails 46, 48 form continuous runways along the guide channels 24, 26. The guide wheels 54 are mounted on the main axle 61 for rolling movement along the guide rails 46, 48 with lateral movement being opposed by the centering wheels 58. Downward (bottoming) movement of each passenger boat is opposed by rolling engagement of the upper guide wheels 54 against the top surface of the guide rails. Upward (pitching) movement of each passenger boat is opposed by engagement of the lower guide wheels 56 against the underside of the guide rails 46, 48.
Referring again to
Referring now to
In this embodiment, aligned groups of linear induction motors 82, 84; 86, 88; 90, 92; and 94, 96 are installed laterally adjacent the guide rails on the scaffolding that supports the inclined ramps. According to this amusement ride arrangement, the passenger boats are propelled by the submerged linear induction motors from the splash lake L upwardly along the inclined ramp 74. The momentum of the passenger boats carry them into magnetic coupling alignment with the elevated linear induction motors 82, 84, and 86, 88. The reaction plates 42, 44 are magnetically coupled with the traveling linear magnetic flux wave, thus propelling the passenger boats up the inclined ramp 74 to a predetermined launch elevation, for example a height of 70 feet.
Upon reaching the launch elevation, the direction of thrust is reversed and the elevated linear induction motors propel the passenger boats rapidly down the inclined launch ramp 74 into the shallow splash lake. The passenger boats 10, 12 are then accelerated along the parallel guide channels 24, 26 by the submerged linear induction motors so that the passenger boats hydroplane at a high speed, for example 40 mph, across the splash lake toward the inclined ramps 78, 80. As the passenger boats enter the flux zone of the second group of submerged linear induction motors, they are accelerated again and the momentum carries them partially up the inclined ramps 78, 80 until the radially projecting reaction plates 42, 44 become magnetically coupled with the elevated linear induction motors, which propel the passenger boats up the inclined launch ramps to a predetermined return launch elevation.
Upon reaching the return launch elevation, the direction of thrusting movement is reversed and the passenger boats are propelled rapidly down the inclined return ramps 78, 80 with the passengers facing away from the direction of return travel. The reaction plates 42, 44 once again become magnetically coupled to the submerged linear induction motors 30, 32 and 34, 36, and the passenger boats are quickly accelerated to hydroplaning speed. The passenger boats 10, 12 coast at hydroplaning speed until their laterally projecting reaction plates become magnetically coupled with the submerged linear induction motors 14, 16 and 18, 20, whereupon their coasting speed is reduced for safe entry into the passenger loading station.
Referring now to
When multiple passenger boats are launched, a safety release system 116 coordinates the release and speed of each passenger boat under microprocessor and limit switch control thereby maintaining a safe operating separation between the passenger boats at all times.
In the continuous loop embodiment, the guide structure can assume various configurations such as the dual “Figure 8” arrangement 118 and the serpentine pattern 120 shown in
Referring again to
Referring now to
Referring again to
Referring now to
Referring now to
Typical construction specifications for the simulated boat race and passenger boat climb amusement rides are given in TABLE 1 and TABLE 2 below.
Although the invention has been described with reference to certain exemplary arrangements, it is to be understood that the forms of the invention shown and described are to be treated as preferred embodiments. Various changes, substitutions and modifications can be realized without departing from the spirit and scope of the invention as defined by the appended claims.
This application claims priority under 35 U.S.C. §120 from the following applications, the disclosures of which are hereby incorporated by reference: U.S. application Ser. No. 10/679,912, filed Oct. 6, 2003 (now pending), which is a division of U.S. application Ser. No. 10/093,067, filed Mar. 7, 2002 (now U.S. Pat. No. 6,629,501), which is a division of U.S. application Ser. No. 09/784,595, filed Feb. 15, 2001 (now U.S. Pat. No. 6,354,223), which is a division of U.S. application Ser. No. 09/281,740, filed Mar. 30, 1999 (now U.S. Pat. No. 6,237,499), which is a continuation-in-part of U.S. application Ser. No. 09/050,810, filed Mar. 30, 1998 (now U.S. Pat. No. 5,860,364), which is a continuation-in-part of U.S. application Ser. No. 08/661,365, filed Jun. 11, 1996 (now U.S. Pat. No. 5,732,635).
Number | Date | Country | |
---|---|---|---|
Parent | 10679912 | Oct 2003 | US |
Child | 11010536 | Dec 2004 | US |
Parent | 10093067 | Mar 2002 | US |
Child | 10679912 | Oct 2003 | US |
Parent | 09784595 | Feb 2001 | US |
Child | 10093067 | Mar 2002 | US |
Parent | 09281740 | Mar 1999 | US |
Child | 09784595 | Feb 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09050810 | Mar 1998 | US |
Child | 09281740 | Mar 1999 | US |
Parent | 08661365 | Jun 1996 | US |
Child | 09050810 | Mar 1998 | US |