The disclosure relates to watercraft protection devices.
Unlike land vehicles, watercrafts have the inherent issue of being forced to dock on unstable water when the boat is parked, stored, or when passengers wish to board or exit the watercraft. These docks typically have cleats or posts which the watercraft can connect to via dock ropes, but the waves in the water can still push the watercraft into the dock, potentially damaging the watercraft. Watercrafts generally have cleats to which rubber, inflatable bumpers can be attached in an effort to protect the watercraft, but the presence of other watercrafts on the dock and the physical location of the dock posts and cleats in relation to the watercraft can cause the bumpers to be in an improper location for the purposes of protecting the watercraft. Watercrafts may also include rub rails designed to protect the watercraft, but these rub rails can become damaged themselves over time, limiting their benefit after sustaining damage.
In one example, the disclosure is directed to a protective fender for a watercraft. The protective fender includes a plurality of locking suction mechanisms configured to secure the protective fender to an exterior portion of the watercraft. The protective fender further includes a fender body, wherein a first surface of the fender body that contacts the exterior portion of the watercraft comprises a smooth surface. The protective fender also includes plurality of adjustable-length straps, wherein a first adjustable-length strap secures an upper-left quadrant of the fender body upwards to a first locking suction mechanism of the plurality of locking suction mechanisms, and wherein a second adjustable-length strap secures an upper-right quadrant of the fender body upwards to a second locking suction mechanism of the plurality of locking suction mechanisms.
In another example, the disclosure is directed to a method of installing a protective fender. The method includes cleaning a surface of an exterior portion of a watercraft. The method also includes placing a first locking suction mechanism of a plurality of locking suction mechanisms at a first location on the surface of the exterior portion of the watercraft. The method further includes placing a second locking suction mechanism of the plurality of locking suction mechanisms at a second location on the surface of the exterior portion of the watercraft. The method also includes activating a lever on each of the first locking suction mechanism and the second locking suction mechanism to secure the first locking suction mechanism and the second locking suction mechanism to the first location and the second location, respectively. The method further includes adjusting a length of a first adjustable-length strap and a length of a second adjustable-length strap such that a fender body of the protective fender covers at least a portion of a rub rail attached to the surface of the exterior portion of the watercraft.
In another example, the disclosure is directed to a protective fender. The protective fender includes a fender body, wherein the fender body includes a first surface, and wherein an interior of the fender body is at least partially hollow. The protective fender also includes an internal compression system located in the interior of the fender body, the internal compression system comprising one or more arches that deform when pressure is applied to the fender body and that elastically return to an original state when the pressure is removed from the fender body.
The details of one or more examples of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.
Watercraft 102 may be any type of watercraft that would be docked in a body of water, such as a man-powered boat, a sailboat, a motorboat, a ski boat, and/or a personal watercraft. Watercraft 102 may be made out of any number of materials, including fiberglass, wood, or metal, among other things. In some instances, watercraft 102 may include rub rail 110, although protective fender 100 may also be used on to protect exterior portions of watercrafts that do not include a rub rail. Rub rail 110 may be made of a metal or rubber material and may be designed to provide a final level of protection for the exterior portion of 102.
Protective fender 100 includes locking suction mechanisms 106A and 106B. Each of locking suction mechanisms 106A and 106B may be configured to secure protective fender 100 to an exterior portion of watercraft 100. For the purposes of this disclosure, locking suction mechanisms 106A and 106B may be any mechanism that securely attaches protective fender 100 to watercraft 102 in a way that also enables protective fender to be removed, relocated, and reattached without placing holes in watercraft 102 and without damaging watercraft 102.
In the examples of
Each of locking suction mechanisms 106A and 106B may also include a casing covering a second surface of the suction cup, or the convex portion of the suction cup. In some examples, the casing is a hard plastic material, although other materials, such as rubber, soft plastic, or metal, may also be used to construct the casing.
Each of locking suction mechanisms 106A and 106B may also include a lever. The lever may be made of a hard plastic material, a rubber material, a soft plastic material, or a metal material. When the lever is in a first position, the casing is pressed against the suction cup to engage the concave surface of the suction cup to the exterior portion of watercraft 102, thereby securing locking suction mechanism 106A or 106B to the exterior portion of watercraft 102. When the lever is in a second position, the casing is lifted away from the suction cup, thereby releasing a connection between the suction cup and the exterior portion of watercraft 102. This enables a user to move and place protective fender 100 in the optimal position based on the environment in which watercraft 102 will be docked.
Protective fender 100 may also include fender body 104. A first surface of fender body 104, when installed on watercraft 102, contacts the exterior portion of watercraft 102. In some instances, the first surface may be a smooth surface, although the first surface may also be textured in other instances.
As shown in
In some instances, fender body 104 may be composed of a foam material. For instance, the foam material comprises an aqua closed-cell foam material. Aqua closed-cell foam is a durable, lightweight, closed-cell polyvinyl chloride foam that has particular thermal, chemical, and physical properties that are viable solutions for a variety of applications, including padding for large vehicles such as watercrafts. However, in other instances, fender body 104 may be composed of another protective material, including rubber, silicon, or plastic, that will not scratch or damage watercraft 102 upon contact. Furthermore, fender body 104 may be made of multiple materials, wherein at least the first surface contact watercraft 102 is made of the foam or other protective material and wherein the opposite surface is made of another material, such as wood, plastic, or metal.
Fender body 104 may also have a customizable appearance. For instance, the protective material (e.g., the foam or aqua closed-cell foam) may be produced in a variety of textures, colors, sizes, or superimposed graphics such that the outward aesthetic appearance of fender body 104 is able to be custom produced by the manufacturer or user of protective fender 100.
In some instances, fender body 104 has a horizontal length that is greater than a vertical length of fender body 104. In other words, fender body 104 extends further along watercraft 102 from bow to stern than it extends along the height of the hell of watercraft 102. In this way, fender body 104 provides a greater contact surface along the length of watercraft 102 without having to be moved around the exterior of watercraft 102.
Protective fender 100 also includes adjustable-length straps 108A and 108B. In the example of
Although the example of
Adjustable-length straps 108A and 108B may be adjustable by a number of means. In some instances, adjustable-length straps 108A and 108B are adjustable by respective adjustment mechanisms incorporated into each of locking suction mechanisms 106A and 106B. Each adjustment mechanism would be configured to adjust the length of the respective adjustable-length strap 108A or 108B secured to the respective locking suction mechanism 106A and 106B. These adjustment mechanisms may include ratchets, clips, or adjustable slides, among other things. In some of these instances, adjustable length straps 108A and 108B may be a simple nylon strap, though adjustable length straps 108A and 108B may also be made of other materials, such as Cordura, canvas, sailcloth, perlon, or any other material suitable for nautical purposes.
In other examples, adjustable length straps 108A and 108B are nylon-webbed hook-and-loop straps (e.g., Velcro® straps). In this instance, adjustment mechanisms may simply include a loop which adjustable length straps 108A and 108B loop around, with the adjustment occurring by the user in securing the nylon-webbed hook-and-loop strap to itself.
Protective fender 100 provides numerous benefits. Firstly, protective fender 100 provides extended surface area coverage, thereby limiting the available points of contact for watercraft 102 with a docking system at which watercraft 102 is parking. Secondly, protective fender 100 allows the user to place fender body 104 at the location of his or her choosing with locking suction mechanisms 106A and 106B. Locking suction mechanisms 106A and 106B eliminate the necessity for the cleats typically found on the exterior of watercrafts and allows the user to place protective fender 100 at the exact location on the hull needed to protect the hull from damage. Additionally, locking suction mechanisms 106A and 106B locking capability allows protective fender 100 to withstand friction and weight when in use and also prevents protective fender 100 from swaying or shifting.
In the example of
Locking suction mechanisms 206A and 106B may also include casing 212. Casing 212 covers a second surface of suction cup 214, or the convex portion of suction cup 214. In some examples, casing 212 is a hard plastic material, although other materials, such as rubber, soft plastic, or metal, may also be used to construct casing 212.
Locking suction mechanism 206 also includes lever 216. Lever 216 may be made of a hard plastic material, a rubber material, a soft plastic material, or a metal material. When lever 216 is in a first position, such as the position shown in
As shown in
Additionally, rather than the locking suction mechanisms of
While watercrafts 102, 202, and 302 of
Additionally, rather than the locking suction mechanisms of
Similarly, one half of attachment mechanism 406B may be attached to a first half of adjustable length strap 40BA, which loops through a different hole in fender body 404. A second half of adjustable length strap 408B is attached to a second half of attachment mechanism 406B. When the two halves of attachment mechanism 406B are connected, fender body 404 may at least partially hang from a fixture on an interior or exterior of watercraft 402, such as cleat 420B.
In other examples, attachment mechanisms 406A and 406B may each be a locking suction mechanism, such as locking suction mechanism 206 of
Additional depictions of watercraft 102 of
In accordance with the techniques described herein, the first installation step includes cleaning a surface of an exterior portion of watercraft 102 (502). The installation process also includes placing a first attachment mechanism (e.g., a locking suction mechanism, a buckle mechanism, such as a side release buckle, or any other mechanism that may attach a protective fender to a watercraft) of the plurality of attachment mechanisms at a first location on the surface of the exterior portion of watercraft 102 (504). The installation process further includes placing a second attachment mechanism (e.g., a locking suction mechanism, a buckle mechanism, such as a side release buckle, or any other mechanism that may attach a protective fender to a watercraft) of the plurality of attachment mechanisms at a second location on the surface of the exterior portion of watercraft 102 (506). The installation process also includes activating each of the first attachment mechanism and the second attachment mechanism, either after each individual attachment mechanism is placed or after both attachment mechanisms are placed, to secure the first attachment mechanism and the second attachment mechanism to the first location and the second location, respectively (508). The installation process also includes adjusting a length of first adjustable-length strap 108A and a length of second adjustable-length strap 108B such that fender body 104 of fender system 100 covers at least a portion of rub rail 110 attached to the surface of the exterior portion of watercraft 102 (510).
Protective fender 604 also includes strap canyons 624A-624D (collectively, strap canyons 624). Strap canyons 624 may be depressions in protective fender 604 that connect two of grommets 622 (e.g., strap canyon 624A traverses the space between grommet 622A and 622B). As such, a singular strap may be used with protective fender 604 where the strap extends through a first grommet, such as grommet 622A, follows the depression of a strap canyon, such as strap canyon 624A, and then extends back through a second grommet, such as grommet 622B. With strap canyons 624 falling into protective fender 604, a singular strap may be used to attach protective fender 604 to a structure, while also limiting the contact that the strap would have with the structure to which protective fender 604 is attached, thereby protecting the integrity of said structure.
Protective fender 604 also includes strap tunnel entries 626A-626H (collectively, strap tunnel entries 626). In the example of
In the example of
Protective fender 704 also includes strap canyons 724A-724D (collectively, strap canyons 724). Strap canyons 724 may be depressions in protective fender 604 that connect two of grommets 722 (e.g., strap canyon 724A traverses the space between grommet 722A and 722B). As such, a singular strap may be used with protective fender 704 where the strap extends through a first grommet, such as grommet 722A, follows the depression of a strap canyon, such as strap canyon 724A, and then extends back through a second grommet, such as grommet 722B. With strap canyons 724 falling into protective fender 604, a singular strap may be used to attach protective fender 704 to a structure, while also limiting the contact that the strap would have with the structure to which protective fender 704 is attached, thereby protecting the integrity of said structure.
Additionally, in the example of
Protective fender 704 also includes strap tunnel entries 726A-726H (collectively, strap tunnel entries 726). In the example of
In the example of
In the example of
In the example of
The following is an example of the techniques described herein, described with respect to
The protective fender also includes an internal compression system located in the interior of fender body 704, the internal compression system including one or more arches 728 that deform when pressure is applied to fender body 704 and that elastically return to an original state when the pressure is removed from fender body 704.
In some instances, the protective fender may be two halves, where fender body 704 includes a first portion (e.g., front half 704A) that includes the internal compression system, and where fender body 704 further includes a second portion (e.g., back half 704B) attached to the first portion. In such instances, a cavity on the interior of fender body 704 is created when the second portion of fender body 704 is attached to the first portion of fender body 704.
In other instances, fender body 704 may be a single continuous piece of material molded to include an at least partially hollow cavity on the interior of fender body 704 that includes the internal compression system.
In some instances, the protective fender further includes one or more strap canyons 724, each strap canyon being an indent in the first surface of fender body 704. In some such instances, the protective fender further includes one or more adjustable length straps, where at least one of the one or more strap canyons includes a strap securement loop 730 in the indent of the respective strap canyon 724. The strap securement loop 730 receives one of the one or more adjustable length straps and holds the strap inside the indent of the respective strap canyon 724 such that, when fender body 704 is installed on an exterior of a watercraft, the one of the one or more adjustable length straps does not contact the exterior of the watercraft.
In some instances, the protective fender further includes one or more strap tunnels, each strap tunnel including at least a first opening 726A and a second opening 726E. The first opening 726A leads from the first surface and into the interior of fender body 704 through a shaft to the second opening 726E. In some such instances, at least part of the shaft of at least one of the one or more strap tunnels is defined by one of the one or more arches 728 of the internal compression system.
In some instances, the protective fender further includes a plurality of attachment mechanisms configured to secure the protective fender to a structure. In some such instances, a first attachment mechanism of the plurality of attachment mechanisms includes a first half of a buckle clip, and a second attachment mechanism of the plurality of attachment mechanisms includes a second half of the buckle clip, where the first half of the buckle clip attaches to the second half of the buckle clip.
In other such instances, a first attachment mechanism of the plurality of attachment mechanisms includes a first buckle clip, and a second attachment mechanism of the plurality of attachment mechanisms includes a second buckle clip.
In still some other such instances, each attachment mechanism of the plurality of attachment mechanisms is a locking suction mechanism. For instance, each locking suction mechanism may include a suction cup, where a first surface of the suction cup is configured to be secured against an exterior portion of the structure. The locking suction mechanism may also include a casing covering a second surface of the suction cup. The locking suction mechanism may also include a lever, where, when the lever is in a first position, the casing is pressed against the suction cup to engage the suction cup to the exterior portion of the structure, and when the lever is in a second position, the casing is lifted away from the suction cup, thereby releasing a connection between the suction cup and the exterior portion of the structure.
The structure may be a watercraft, and fender body 704, when secured to the watercraft via the plurality of attachment mechanisms, covers at least a portion of a rub rail attached to the exterior portion of the watercraft.
In some instances, the protective fender further includes a plurality of adjustable-length straps and a plurality of adjustment mechanisms, each adjustment mechanism being attached to a respective one of the plurality of adjustable length straps. Each adjustment mechanism may be configured to adjust the length of the respective adjustable-length strap secured to the respective attachment mechanism. Each of the plurality of adjustable-length straps may be made of nylon or some other suitable material. Each of the plurality of adjustable-length straps may include a nylon-webbed hook-and-loop strap.
It is to be recognized that depending on the example, certain acts or events of any of the techniques described herein can be performed in a different sequence, may be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the techniques). Moreover, in certain examples, acts or events may be performed concurrently.
Various examples of the disclosure have been described. Any combination of the described systems, operations, or functions is contemplated. These and other examples are within the scope of the following claims.
This application is a Continuation-in-Part application of U.S. patent application Ser. No. 17/341,506, filed Jun. 8, 2021, which claims priority to U.S. Provisional Patent Application No. 63/036,135, filed Jun. 8, 2020, the entire contents of each which are incorporated herein.
Number | Date | Country | |
---|---|---|---|
63036135 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17341506 | Jun 2021 | US |
Child | 18316604 | US |