This application is based on and claims priority to Japanese Patent Application No. 2006-068575, filed Mar. 14, 2006, the entire contents of which is hereby expressly incorporated by reference.
1. Field of the Inventions
The present inventions relate to watercraft propulsion apparatuses having engines that produce thrust under control of a remote control device, and to a watercraft having such propulsion apparatuses. The remote control device can be operated using a shift lever, and can electrically and remotely control shifting among forward, neutral, and reverse modes.
2. Description of the Related Art
Conventionally, many watercraft include a neutral switch that prevents the watercraft's engine from starting when a gear shift system is not in a neutral position; that is, when the gear shift system is engaged or “in gear”. When such a gear shift system is in its neutral position, the neutral switch outputs a signal. When this signal is output, the engine is allowed to start. On the other hand, the engine is prevented from starting when the gear shift system is in a gear position other than neutral, thereby preventing abrupt movements that may result if the engine were started in gear.
Japanese Patent Document JP-A-2005-297785 discloses a watercraft provided with a remote controller for electrically and remotely controlling shifting operations between forward, neutral, and reverse modes by operating a shift lever. This remote control system runs a program to detect an angular position of the shift lever, and to transmit a signal indicating the detected angular position to an ECU (electronic control unit) of an associated outboard motor. The ECU activates a shift actuator, which actuates a dog clutch to carry out a shifting operation.
In this system, when the engine is stopped in gear and the shift lever is then later moved to the neutral position, the gear shift system remains in gear because the shift lever and the shift actuator are not mechanically connected. As such, it is possible for the engine to be started while the shift system is in gear even though the shift lever is set to the neutral position. In this case, an operator may erroneously believe the gear shift system is in neutral on the basis of the position of the shift lever, and operate an ignition switch so as to start the engine, which results in cranking in gear.
Japanese Patent Document JP-A-2004-244003 discloses a neutral switch for transmitting a neutral signal to an electrically-operated actuator. In this system, the engine can be started in accordance with the neutral signal.
Systems that include a neutral detection device in the gear shift system require the additional installation of a neutral safety switch mechanism for detecting a neutral state, which requires additional space therefor. In addition, when a determination as to whether to permit engine starting according to on the basis of on a neutral signal is made by software, the responsiveness of engine starting to an operation with an engine starting switch is unfavorable. For example, as noted above, a user may move the shift lever to the neutral position after the engine has been stopped with the gear shift system in gear. Then, a user might attempt to re-start the engine before the software can shift the gear shift system into the neutral position in accordance with the position of the shift lever.
Thus, in accordance with an embodiment, a watercraft propulsion system can have an engine configured to produce thrust under control of a remote controller that remotely controls shifting between forward, neutral, and reverse modes. The watercraft propulsion apparatus can comprise a shifting mechanism configured to shifting gears between forward, neutral, and reverse gears, a shift actuator configured to drive the shifting mechanism, a shift position sensor configured to detect a position of the shift actuator with respect to the forward, neutral, and reverse gears, and a controller configured to control the shift actuator in accordance with a signal provided from the shift position sensor. A start-regulation circuit can include a plurality of semiconductor devices, the circuit being configured to deactivate a starter of the engine when a starting switch of the engine is turned on in a state where a position other than neutral is detected by the shift position sensor.
In accordance with another embodiment, a watercraft propulsion system can have an engine configured to produce thrust under control of a remote controller that remotely controls shifting between forward, neutral, and reverse modes. The watercraft propulsion apparatus can comprise a shifting mechanism configured to shifting gears between forward, neutral, and reverse gears, a shift actuator configured to drive the shifting mechanism, a shift position sensor configured to detect a position of the shift actuator with respect to the forward, neutral, and reverse gears, and a controller configured to control the shift actuator in accordance with a signal provided from the shift position sensor. Additionally, the system can include a start-regulation circuit including a plurality of semiconductor devices, the circuit including means for deactivating a starter of the engine when a starting switch of the engine is turned on in a state where a position other than neutral is detected by the shift position sensor.
The above-mentioned and other features of the inventions disclosed herein are described below with reference to the drawings of the preferred embodiments. The illustrated embodiments are intended to illustrate, but not to limit the inventions. The drawings contain the following Figures.
Improved boats and remote control systems for boats are disclosed herein. Although the present boats and remote control systems are illustrated and described in the context of an outboard motor-powered boat, the present inventions can be used with other types of remote control systems and other types of vehicles.
As shown in
The remote controller 12 incorporates a remote-controller ECU 17 in a remote controller body 16, and can comprise a shift lever 18 for performing throttle and shifting operations. By operating the shift lever 18, shifting among forward, neutral, and reverse modes can be remotely effected. As shown in
As shown in
As shown in
The steering unit 14 can incorporate a steering ECU (not shown) and a steering wheel 27 for use in a steering operation. The position of the steering wheel 27 can be detected by a position sensor, which can be connected to the steering ECU by way of a signal circuit.
The steering ECU of the steering unit 14 can be connected to the engine ECU 21 by way of a DBW CAN cable serving as a signal line. “Drive-by-wire,” or “DBW,” referred to herein is a controller for performing control processes using electrical signals in place of conventional mechanical connections. The term “CAN” is an abbreviation for “controller area network.”
Each of reference numerals 28 in
As shown in
Gear shifting between the forward, neutral, and reverse positions in the shift system 32 can be carried out by the shifting mechanism 23. The shifting mechanism 23 can be actuated by the shift actuator 22.
For example, in some embodiments, as shown in
The shift gearing 30 can have a forward gear 39 and a reverse gear 40, both of which are rotatably attached to the propeller shaft 34. Both of the gears 39 and 40 mesh with a pinion 41 fixed to the drive shaft 31, which can be driven to rotate clockwise as seen from above, thereby rotating the gears 39 and 40 in opposite directions relative to each other.
The forward gear 39 can be disposed at a rear side as viewed from the forward-advancing direction (leftward in
A sleeve-shaped dog clutch 42 can be engaged with splines to the outer surface of the propeller shaft 34 at a position between the gears 39 and 40 so that the dog clutch 42 can be slidable in the axial direction of the propeller shaft 34. The dog clutch 42 has cogs 42a, both projecting in opposite directions from an axial end of the clutch 42. The gears 39 and 40 have cogs 39a and 40a, respectively, which face the cogs 42a. This structure can be considered as forming a meshing clutch.
The propeller shaft 34 can have, at its front end, an insertion hole 34a having an open front end along the axial direction. A shift sleeve 44 can be inserted into the insertion hole 34a so as to be axially slidable. An elongated hole 34b, which can be elongated in the axial direction of the shaft 34, can be formed in the side wall of the insertion hole 34a of the propeller shaft 34.
A through hole 42b, 44b can be formed along the diametral direction through the shift sleeve 44 and the dog clutch 42. A pin 46 can be inserted through a through hole 42b in the dog clutch 42, the elongated hole 34b in the propeller shaft 34, and a through hole 44b in the shift sleeve 44.
With this configuration, as the shift sleeve 44 moves, the pin 46 can be axially moved within the range of the elongated hole 34b, and hence the dog clutch 42 can be moved in the axial direction of the propeller shaft 34 linked with the pin 46. However, other configurations can also be used.
Detent balls 48 can be disposed in the shift sleeve 44 so as to be capable of protruding from or retracting into the outer surface of the shift sleeve 44. The detent balls 48 can be detachably engaged into a recess 34c in the propeller shaft 34. The detent balls 48 are urged by a spring 49 and a pressing member 50 in the protruding direction.
A shift slider 51 can be connected to a front end portion 44a of the shift sleeve 44 so as to be slidable in the lateral direction in
At the lower end of a shift shaft 54 of the shift device 23, a drive pin 54a, which can be disposed at a position offset from the rotary axis of the shift shaft 54 so as to form a crank, can be inserted in the engagement groove 51a. As the shift shaft 54 rotates, the drive pin 54a can be eccentrically rotated, thereby causing the shift slider to slide and hence causing the dog clutch 42 to slide.
Thus, clockwise rotation of the shift shaft 54 causes the dog clutch 42 to slide in a corresponding direction, while counterclockwise rotation of the shift shaft 54 causes the dog clutch 42 to slide in the direction opposite thereto. However, other configurations can also be used.
As shown in
The shift actuator 22 can have a shift motor 25, which can be a DC motor serving as a drive source, a reduction gearing, and the like. However other types of actuators, motors and the like can also be used. The shift actuator 22 can be configured to drive the slider 58 in a given direction.
As shown in
For example, the shift position sensor 61 can be connected to the control microcomputer 64 by way of interface circuits 65 and 66, and also branched at a point between the interface circuit 65 and the control microcomputer 64 to thus be connected to the start-regulation circuit 68. Alternatively, the shift position sensor 61 may be branched at a point within the interface circuit 65 and connected to the start-regulation circuit 68.
The start-regulation circuit 68 can comprise a window comparator 69, a NOR circuit 70, an OR circuit 71, an AND circuit 72, a starter relay 73. The circuits 70 to 72 can be considered to be “semiconductor devices”, as used herein.
One of two input terminals of the NOR circuit 70 can be connected to the shift position sensor 61 by way of the window comparator 69, and the other one of the input terminals can be connected to a cranking-permission/inhibition section of the control microcomputer 64. An output terminal of the NOR circuit 70 can be connected to one of two input terminals of the AND circuit 72.
One of two input terminals of the OR circuit 71 can be connected to the starting switch 75, and the other one of the input terminals can be connected to the cranking-permission/inhibition section of the control microcomputer 64. An output terminal of the OR circuit 71 can be connected to the other one of the input terminals of the AND circuit 72. The AND circuit 72 can be also connected to an exciting coil 73a of the starter relay 73. A normally-open contact 73b of the starter relay 73 can be connected to a starting motor 76 serving as a “starter” for starting the engine 30.
The window comparator 69 can be a sensing circuit for making a determination by reference to input voltage ranges which can be arbitrarily predetermined. As shown in
When the shift position sensor 61 detects the forward (F) position or an N-F intermediate zone (a zone where a determination cannot be made due to crossing between the neutral and forward zones), a voltage within the range of 3 to 4.5 V can be input from the shift position sensor 61 to the window comparator 69, in response to which the window comparator 69 outputs a signal identified as “Hi”. Put another way, the N-F intermediate zone (the zone where a definite determination can be difficult to make) is not determined as the neutral (N) position.
For a fail-safe range, a voltage of 4.5 V or higher can be input from the shift position sensor 61 to the window comparator 69, in response to which the window comparator 69 outputs a signal Hi.
When the shift position sensor 61 detects the reverse (R) position or an N-R intermediate zone (a zone where a determination cannot be made due to crossing), a voltage within the range of 0.5 to 2 V can be input from the shift position sensor 61 to the window comparator 69, in response to which the window comparator 69 outputs a signal Hi.
For another fail-safe range, a voltage of 0.5 V or lower can be input from the shift position sensor 61 to the window comparator 69, in response to which the window comparator 69 outputs a signal Hi.
As shown in
As shown in
In operation, where the starting switch 75 is turned on from an engine-stopped state, the following four patterns of operation can be performed:
As described above in patterns (1) and (2), in the state where the engine 30 is in gear, the starting motor 76 of the engine 30 can be inhibited from starting even when the starting switch 75 is turned on from an engine-stopped state. In contrast, as described above in patterns (3) and (4), in the state where the engine 30 is in neutral, the starting motor 76 of the engine 30 can be allowed to start when the starting switch 75 is turned on from the engine-stopped state.
Patterns (1) and (2) are described in greater detail below. As shown in
As shown in
As shown in
Next, patterns (3) and (4) will be described below. When the engine 30 is in neutral, upon receipt of an input voltage value supplied from the shift position sensor 61, the window comparator 69 outputs a signal Lo to one of the two input terminals of the NOR circuit 70. The cranking-permission/inhibition section of the control microcomputer 64 outputs a signal Lo to the other one of the input terminals of the NOR circuit 70. The NOR circuit 70 outputs a signal Hi through its output terminal (see
When the starting switch 75 is turned on, a signal Hi can be input to the one of the two input terminals of the OR circuit 71. The cranking commanding section of the control microcomputer 64 outputs a signal Lo, corresponding to “cranking command not to be issued,” to the other one of the input terminals of the OR circuit 71. In response thereto, the OR circuit 71 outputs a signal Hi through its output terminal (see
As shown in
Meanwhile, when the control microcomputer 64 is set to the “cranking inhibited” state, the cranking-permission/inhibition section outputs a signal Hi to the one of the two input terminals of the NOR circuit 70, and the NOR circuit 70 outputs a signal Lo.
Upon receipt of the signal Lo, the AND circuit 72 inevitably outputs a signal Lo, which opens the starter relay 73, thereby inhibiting the starting motor 76 from starting. Hence, there can be attained the control of inhibiting the engine 30 from starting even when the starting switch 75 is turned on from the engine-stopped state.
Once the starting switch 75 is turned on, the cranking commanding section of the control microcomputer 64 can be set to an “cranking command to be issued” state, and the OR circuit 71 outputs a signal Hi. Accordingly, even when the starting switch 75 is of a button type, which maintains the on state while being depressed but turns off when released, the cranking commanding section can be set to the “cranking command to be issued” state, and the OR circuit 71 outputs the signal Hi. Therefore, even when the starting switch 75 is turned on and thereafter turned off, so long as the engine 30 is in neutral, the AND circuit 72 outputs a signal Hi. Hence, the starter relay 73 can be closed, thereby allowing the engine 30 to start.
In the above configuration, the start-regulation circuit 68 that deactivates the starting motor 76 of the engine 30 can be hardware circuitry having a plurality of logic circuits (the NOR circuit 70, and the like). Since the period of time required by the hardware circuitry from power-on to startup completion can be shorter than required by an equivalent configuration using software, the starting responsiveness to an operation with the starting switch 75 is improved.
In addition, utilization of the shift position sensor 61, which can be employed for use with the shift actuator 22 to move the gear to an arbitrary position, eliminates the need of disposing an additional device, such as a sensor, and thus achieves space saving. In other words, in some embodiments, the sensor 61 can be incorporated into the shift actuator 22, and can be configured to detect the movement of the slider 58. In some embodiments, the sensor 61 can be included in the motor 25. Some such motors, such as servo motors, normally include a sensor that can serve as the shift position sensor 61. However, such a sensor 61 can also be disposed in other locations. In such embodiments, there is no need for disposing a sensor in the lower unit of the outboard motor 11.
In addition, since the shift position sensor 61 can be of a non-contact type, durability can be improved, thereby enhancing reliability.
The shift position sensor 61 can be connected to the control microcomputer 64 by way of the interface circuit 65, and also branched at a point between the interface circuit 65 and the control microcomputer 64 to thus be connected to the start-regulation circuit 68. Accordingly, the interface circuit 65 can be simplified.
When the intermediate zone between the neutral and forward positions or that between the neutral and reverse positions are detected by the shift position sensor 61, the start-regulation circuit 68 determines that a position other than neutral is detected, and deactivates the engine 30 even when the starting switch 75 of the engine 30 is turned on. Since the engine 30 can be inhibited from starting in the intermediate range, the engine 30 can be protected from undesirable abrupt moving and the like, which may otherwise occur when the engine 30 is started in the intermediate range concurrently with gear engagement.
Furthermore, the control microcomputer 64 can have the cranking-permission/inhibition section that issues an instruction for permitting or inhibiting cranking. When the cranking-permission/inhibition section outputs a signal indicative of cranking inhibition to the start-regulation circuit 68, the cranking-permission/inhibition section deactivates the engine 30 by way of the start-regulation circuit 68. Since cranking inhibition by the control microcomputer 64 and that by the start-regulation circuit 68 can coexist, the circuit can be realized with a simple configuration.
The control microcomputer 64 can be disposed at or in the engine ECU 21 and can be configured to perform the above-described functions using, for example, software modules. However, other configurations can also be used.
The engine ECU 21 can also include the logic circuits, which can be semiconductor devices of the start-regulation circuit 68 and which are connected to the starting switch 75 of the engine 30. Since determination on starting can be made in the engine ECU 21, wiring can be simplified, thereby reducing the number of connections in the outboard motor 11, and enhancing reliability.
Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combination or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.
Number | Date | Country | Kind |
---|---|---|---|
2006-068575 | Mar 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1843272 | Evinrude | Feb 1932 | A |
2204265 | Wentzel | Jun 1940 | A |
2466282 | Sparrow et al. | Apr 1949 | A |
2740260 | Blanchard | Apr 1956 | A |
3986363 | Beaman et al. | Oct 1976 | A |
4412422 | Rossi | Nov 1983 | A |
4622938 | Wenstadt et al. | Nov 1986 | A |
4646696 | Dogadko | Mar 1987 | A |
4648697 | Kawazoe | Mar 1987 | A |
4747381 | Baltz et al. | May 1988 | A |
4755156 | Wagner | Jul 1988 | A |
4788955 | Wood | Dec 1988 | A |
4801282 | Ogawa | Jan 1989 | A |
4805396 | Veerhusen et al. | Feb 1989 | A |
4809506 | Lauritsen | Mar 1989 | A |
4810216 | Kawamura | Mar 1989 | A |
4836809 | Pelligrino | Jun 1989 | A |
4850906 | Kanno et al. | Jul 1989 | A |
4858585 | Remmers | Aug 1989 | A |
4898045 | Baba | Feb 1990 | A |
4964276 | Sturdy | Oct 1990 | A |
5004962 | Fonss et al. | Apr 1991 | A |
5051102 | Onoue | Sep 1991 | A |
5062403 | Breckenfeld et al. | Nov 1991 | A |
5062516 | Prince | Nov 1991 | A |
5065723 | Broughton et al. | Nov 1991 | A |
5103946 | Masters et al. | Apr 1992 | A |
5144300 | Kanno | Sep 1992 | A |
5157956 | Isaji et al. | Oct 1992 | A |
5167212 | Peter et al. | Dec 1992 | A |
5273016 | Gillespie et al. | Dec 1993 | A |
5318466 | Nagafusa | Jun 1994 | A |
5352138 | Kanno | Oct 1994 | A |
5381769 | Nishigaki et al. | Jan 1995 | A |
5492493 | Ohkita | Feb 1996 | A |
5539294 | Kobayashi | Jul 1996 | A |
5595159 | Huber et al. | Jan 1997 | A |
5664542 | Kanazawa et al. | Sep 1997 | A |
5730105 | McGinnity | Mar 1998 | A |
5749343 | Nichols et al. | May 1998 | A |
5771860 | Bernardi | Jun 1998 | A |
5782659 | Motose | Jul 1998 | A |
5899191 | Rabbit et al. | May 1999 | A |
6015319 | Tanaka | Jan 2000 | A |
6026783 | Nestvall et al. | Feb 2000 | A |
6058349 | Kikori et al. | May 2000 | A |
6073509 | Salecker et al. | Jun 2000 | A |
6073592 | Brown et al. | Jun 2000 | A |
6095488 | Semeyn, Jr. et al. | Aug 2000 | A |
6098591 | Iwata | Aug 2000 | A |
6109986 | Gaynor et al. | Aug 2000 | A |
6233943 | Beacom et al. | May 2001 | B1 |
6273771 | Buckley et al. | Aug 2001 | B1 |
6280269 | Gaynor | Aug 2001 | B1 |
6351704 | Koerner | Feb 2002 | B1 |
6379114 | Schott et al. | Apr 2002 | B1 |
6382122 | Gaynor et al. | May 2002 | B1 |
6414607 | Gonring et al. | Jul 2002 | B1 |
6485340 | Kolb et al. | Nov 2002 | B1 |
6587765 | Graham et al. | Jul 2003 | B1 |
6612882 | Shidara et al. | Sep 2003 | B2 |
6658960 | Babin et al. | Dec 2003 | B2 |
6704643 | Suhre et al. | Mar 2004 | B1 |
6751533 | Graham et al. | Jun 2004 | B2 |
6910927 | Kanno | Jun 2005 | B2 |
6923696 | Okuyama | Aug 2005 | B2 |
6965817 | Graham et al. | Nov 2005 | B2 |
7121908 | Okuyama | Oct 2006 | B2 |
7142955 | Kern et al. | Nov 2006 | B1 |
7153174 | Takeda et al. | Dec 2006 | B2 |
7220153 | Okuyama | May 2007 | B2 |
20030082962 | Kanno | May 2003 | A1 |
20030092331 | Okuyama | May 2003 | A1 |
20030093196 | Okuyama | May 2003 | A1 |
20040029461 | Shomura | Feb 2004 | A1 |
20050118895 | Kanno et al. | Jun 2005 | A1 |
20050245145 | Takada et al. | Nov 2005 | A1 |
20050286539 | Okuyama | Dec 2005 | A1 |
20060240720 | Yamashita et al. | Oct 2006 | A1 |
20070082565 | Okuyama | Apr 2007 | A1 |
20070082566 | Okuyama | Apr 2007 | A1 |
20070178780 | Ito et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
03-061196 | Mar 1991 | JP |
2001-260986 | Sep 2001 | JP |
2003-098044 | Apr 2003 | JP |
2003-127986 | May 2003 | JP |
2003-146293 | May 2003 | JP |
2004-068704 | Mar 2004 | JP |
2004-208452 | Jul 2004 | JP |
2004-244003 | Sep 2004 | JP |
2005-272352 | Sep 2005 | JP |
2005-297785 | Oct 2005 | JP |
2006-068575 | Mar 2006 | JP |
2006-074794 | Mar 2006 | JP |
2006-076871 | Mar 2006 | JP |
2006-087325 | Apr 2006 | JP |
2006-115305 | Apr 2006 | JP |
2006-118039 | May 2006 | JP |
2006-154480 | Jun 2006 | JP |
2006-156526 | Jun 2006 | JP |
WO 2005-102833 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070218785 A1 | Sep 2007 | US |