1. Field of the Invention
The present invention relates to a watercraft propulsion device.
2. Description of the Related Art
There is a known control to suppress a rotational speed of an engine by stopping a spark ignition (hereinafter called “misfiring”) when a rotational speed of the engine exceeds a prescribed rotational speed. For example, an ignition control apparatus of an engine disclosed in Laid-open Japanese Patent Application Publication No. 2002-480412 is configured to set a misfiring mode when a throttle is opened rapidly. While the misfiring mode is set, misfiring of the engine is executed when the engine rotational speed becomes equal to or higher than a prescribed rotational speed. Meanwhile, Laid-open Japanese Patent Application Publication No. 03-210068 discloses an engine control apparatus in which a temperature of an engine is detected using a temperature sensor and a rotational speed of the engine is detected using a rotational speed sensor. If engine overheating is detected, then the apparatus executes misfiring of the engine according to a prescribed procedure such that the rotational speed of the engine becomes equal to a prescribed rotational speed.
With the engine ignition control apparatus disclosed in Laid-open Japanese Patent Application Publication No. 2002-480412, an engine can be prevented from being over-revved due to a rapid operation of a throttle by a driver. However, in the case of an outboard boat motor or other watercraft propulsion device, there are times when the engine enters an unloaded state temporarily due to, for example, the propeller becoming exposed above the water surface. In such a case, the engine rotational speed may increase abruptly even though the operator has not performed an abrupt operation of the throttle. Thus, in the case of a watercraft propulsion device, it is difficult for an increase of the engine rotational speed to be suppressed using the control presented in Laid-open Japanese Patent Application Publication No. 2002-480412.
In the engine control apparatus disclosed in Laid-open Japanese Patent Application Publication No. 03-210068, the engine rotational speed is controlled to a prescribed rotational speed by executing engine misfiring according to a prescribed procedure. Consequently, an increase of the engine rotational speed can be suppressed regardless of whether an operator performs an abrupt throttle operation or not. However, if the engine enters an unloaded state as explained above, then the engine rotational speed will increase instantaneously. It is difficult to counter such an instantaneous increase of the engine rotational speed in an instantaneous fashion by merely executing misfiring in accordance with the engine rotational speed in the manner of the engine control apparatus disclosed in Laid-open Japanese Patent Application Publication No. 03-210068.
Preferred embodiments of the present invention provide a watercraft propulsion device that counters an instantaneous increase of an engine rotational speed in an instantaneous manner.
A watercraft propulsion device according to a preferred embodiment of the present invention includes an engine, a drive shaft, a propeller shaft, a rotational speed detector, and a controller. The drive shaft transmits power from the engine. The propeller shaft is rotationally driven by power transmitted from the drive shaft. The rotational speed detector detects an engine rotational speed. The controller executes a suppression control to suppress the rotational speed of the engine when a change rate of the engine rotational speed is equal to or larger than a prescribed value.
A watercraft propulsion device according to another preferred embodiment of the present invention includes an engine, a drive shaft, a propeller shaft, and a controller. The drive shaft transmits power from the engine. The propeller shaft is rotationally driven by power transmitted from the drive shaft. The controller executes a suppression control to suppress an engine rotational speed when a first computed rotational speed is equal to or larger than a first threshold value. The first computed rotational speed is an engine rotational speed computed based on rotation time per first rotational angle of the engine. The controller is configured to execute a suppression control when a second computed rotational speed is equal to or larger than a second threshold value. The second computed rotational speed is an engine rotational speed computed based on rotation time per second rotational angle that is smaller than the first rotational angle.
A watercraft propulsion device according to a preferred embodiment of the present invention executes a suppression control to suppress an engine rotational speed when a change rate of the engine rotational speed is equal to or larger than a prescribe value. Thus, a determination to execute or not execute the suppression control is made based on the change rate of the engine rotational speed. As a result, an instantaneous increase of the engine rotational speed can be countered in an instantaneous fashion.
A watercraft propulsion device according to another preferred embodiment of the present invention uses a first computed rotational speed and a second computed rotational speed as engine rotational speeds to determine whether to execute a suppression control. The second computed rotational speed is computed using a rotation time per rotational angle that is smaller than a rotational angle used to compute the first computed rotational speed. As a result, by determining whether to execute the suppression control using the second computed rotational speed, an instantaneous increase of the engine rotational speed can be countered in an instantaneous fashion.
The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
A watercraft propulsion device according to preferred embodiments of the present invention will now be explained with reference to the drawings.
The engine 5 is arranged inside the engine cover 2. The engine 5 preferably is a multiple cylinder engine and the cylinders are arranged vertically adjacent to one another, for example. In this preferred embodiment, the engine 5 preferably includes four cylinders, for example. The engine 5 includes a crankshaft 12. The crankshaft 12 extends along a vertical direction. A drive shaft 11 is arranged inside the upper casing 3 and the lower casing 4. The drive shaft 11 is arranged to extend along a vertical direction inside the upper casing 3 and the lower casing 4. The drive shaft 11 is connected to the crankshaft 12 of the engine 5 and serves to transmit power from the engine 5. A propeller 13 is arranged on a lower portion of the lower casing 4. The propeller 13 is arranged below the engine 5. The propeller 13 is connected to a propeller shaft 14. The propeller shaft 14 is arranged to extend along a front-to-rear direction. The propeller shaft 14 connects to a lower portion of the drive shaft 11 through a shift mechanism 15. The propeller shaft 14 is rotationally driven by power transmitted from the drive shaft 11.
The shift mechanism 15 is configured to change a rotation direction of power transmitted from the drive shaft 11 to the propeller shaft 14. The shift mechanism 15 includes a pinion gear 16, a forward propulsion gear 17, a reverse propulsion gear 18, and a dog clutch 19. The pinion gear 16 is connected to the drive shaft 11. The pinion gear 16 meshes with the forward propulsion gear 17 and the reverse propulsion gear 18. The forward propulsion gear 17 and the reverse propulsion gear 18 are arranged such that they can undergo relative rotation with respect to the propeller shaft 14. The dog clutch 19 is attached non-rotatably to the propeller shaft 14. The dog clutch 19 is arranged such that it can move along an axial direction of the propeller shaft 14 to a forward propulsion position, a reverse propulsion position, and a neutral position. The dog clutch 19 moves between the forward propulsion position, the reverse propulsion position, and the neutral position in response to operation of an operating device 31 (see
The operating device 31 is attached to the hull. The operating device 31 is, for example, an operating lever. The operating device 31 is configured to send an operating signal to control an output of the engine 5 to the ECU 21 in accordance with an operating state of the operating device 31. The ECU 21 controls the engine 5 based on the operation signal from the operating device 31. When an operator operates the operating device 31, an operation signal indicating a detection value corresponding to a position of the operating device 31 is issued from the operating device 31. This operation signal can be used to control a throttle opening degree and a speed of the watercraft. The operator can also select whether to propel the watercraft forward or in reverse by operating the operating device 31. More specifically, the operating device 31 can be set to any one of a forward propulsion position (F), a reverse propulsion position (R), and a neutral position (N). The ECU 21 controls a shift actuator 25 based on the operation signal from the operating device 31. The shift actuator 25 includes, for example, a motor or other driving device. The shift actuator 25 is controlled by the ECU 21 and moves the dog clutch 19 among the forward propulsion position, the reverse propulsion position, and the neutral position.
As shown in
Based on the engine rotational speed, the ECU 21 executes a suppression control to suppress the engine rotational speed. FIG. 4 is a flowchart showing processing steps of a suppression control according to a first preferred embodiment of the present invention. The suppression control includes a normal over-revving determination processing sequence (steps S103 to S110) configured to determine if over-revving of the engine 5 is occurring using the engine rotational speed and an instantaneous over-revving determination processing sequence (steps S101 to S102) configured to determine if over-revving is occurring using a change rate of the engine rotational speed. The suppression control that will now be explained is executed repetitively while the engine 5 is running.
In step S101, the ECU 21 determines if a change rate RN of the engine rotational speed is equal to or larger than a prescribed value r. The change rage RN of the engine rotational speed is an amount of change of the engine rotational speed per prescribed unit of time and expressed as shown in Equation 1 below.
RN=N(n)−N(n−1) Equation 1
The component N(n) is an engine rotational speed computed based on a latest detection value of the rotation time t1 per first rotational angle. The component N(n−1) is an engine rotational speed computed based on a detection value of the rotation time t1 per first rotational angle detected one control cycle prior to the latest control cycle.
If the change rate RN of the engine rotational speed is equal to or larger than the prescribed value r, then the ECU 21 proceeds to step S102. In step S102, the ECU 21 determines if the engine rotational speed N is equal to or larger than a prescribed rotational speed Nb. The ECU 21 proceeds to step S103 if it determines that the change rate RN of the engine rotational speed is not equal to or larger than the prescribed value r in step S101 or if it determines that the engine rotational speed N is not equal to or larger than the rotational speed Nb in step S102.
In step S103, the ECU 21 determines if the engine rotational speed N is equal to or larger than a prescribed rotational speed Na1. If the engine rotational speed N is equal to or larger than the rotational speed Na1, then the ECU 21 proceeds to step S104.
In step S104, the ECU 21 determines if the engine rotational speed N is equal to or larger than a prescribed rotational speed Na2. The rotational speed Na2 is a larger value than the rotational speed Na1. If the engine rotational speed N is not equal to or larger than the rotational speed Na2, then the ECU 21 proceeds to step S105. In step S105, misfiring is executed at one cylinder of the engine 5. In this way, the engine rotational speed is suppressed. The misfiring is accomplished by, for example, executing a fuel injection cut control. The fuel injection cut control is configured to control the fuel injection apparatus 22 such that an injection of fuel is stopped.
If the ECU 21 determines that the engine rotational speed N is equal to or larger than the rotational speed Na2 in step S104, then the ECU 21 proceeds to step S106. In step S106, the ECU 21 determines if the engine rotational speed N is equal to or larger than a prescribed rotational speed Na3. The rotational speed Na3 is a larger value than the rotational speed Na2. If the engine rotational speed N is not equal to or larger than the rotational speed Na3, then the ECU 21 proceeds to step S107. In step S107, misfiring is executed at two cylinders of the engine 5.
If the ECU 21 determines that the engine rotational speed N is equal to or larger than the rotational speed Na3 in step S106, then the ECU 21 proceeds to step S108. In step S108, the ECU 21 determines if the engine rotational speed N is equal to or larger than a prescribed rotational speed Na4. The rotational speed Na4 is a larger value than the rotational speed Na3. If the engine rotational speed N is not equal to or larger than the rotational speed Na4, then the ECU 21 proceeds to step S109. In step S109, misfiring is executed at three cylinders of the engine 5.
If the ECU 21 determines that the engine rotational speed N is equal to or larger than the rotational speed Na4 in step S108, then the ECU 21 proceeds to step S110. In step S110, misfiring is executed at four cylinders of the engine 5. That is, in step S110, misfiring is executed at all cylinders of the engine 5.
The ECU 21 also proceeds to step S110 and executes misfiring at all of the cylinders of the engine 5 when it determines that the change rate RN of the engine rotational speed is equal to or larger than the prescribed value R in step S101 and that the engine rotational speed N is equal to or larger than the rotational speed Nb in step S102. The rotational speed Nb is a smaller value than the rotational speed Na4. In this preferred embodiment, the rotational speed Nb is equal to the rotational speed Na3.
Thus, in the first preferred embodiment of the present invention, a change rate of an engine rotational speed is used to determine whether to execute a suppression control. Consequently, when a load imposed on an engine 5 decreases abruptly, an instantaneous increase in the engine rotational speed can be countered more rapidly than if the suppression control is executed based solely on the engine rotational speed in the manner of a conventional watercraft propulsion device. For example, as shown in
A suppression control according to a second preferred embodiment of the present invention will now be explained.
In step S201 of the suppression control flowchart shown in
A watercraft propulsion device according to the second preferred embodiment uses a first computed rotational speed and a second computed rotational speed as engine rotational speeds to determine whether to execute a suppression control. The second computed rotational speed is computed using a rotation time per rotational angle that is smaller than a rotational angle used to compute the first computed rotational speed. Thus, the determination of whether to execute the suppression control is accomplished using both a first computed rotational speed and a second computed rotational speed that is computed at a shorter cycle time than the first computed rotational speed. Consequently, similarly to the first preferred embodiment, an instantaneous increase of the engine rotational speed can be countered in an instantaneous manner when the load imposed on the engine decreases abruptly.
Although preferred embodiments of the present invention have been described above, the present invention is not limited to the preferred embodiments described above. Various changes can be made without departing from the scope of the present invention.
Although in the previously explained preferred embodiments, an outboard boat motor preferably is presented as an example of the watercraft propulsion device, various preferred embodiments of the present invention can be applied to other types of watercraft propulsion devices. For example, it is acceptable to apply various preferred embodiments of the present invention to an inboard/outboard motor. The engine is not limited to four cylinder engine; it is acceptable if the engine includes more than four or fewer than four cylinders. Although in the previously explained preferred embodiments, a crank angle sensor 26 is preferably used as a rotational speed detector, it is acceptable to use another sensor to detect the engine rotational speed. For example, it is acceptable to use a sensor configured to detect a rotational speed of a flywheel magnet. It is also acceptable to use a Hall effect sensor or a magnetic resistance sensor as a sensor to detect a rotational speed.
Although in the previously explained preferred embodiments, a fuel injection cut control is preferably used as the suppression control, it is also acceptable to use another method. For example, it is acceptable to use such methods as executing an ignition cut, reducing a throttle opening degree, changing an ignition timing, and shifting to a leaner air-fuel mixture. It is acceptable to execute one of these methods as the suppression control or to execute a combination of two or more of these methods as the suppression control. An ignition cut control is configured to control the ignition apparatus 24 such that spark ignition of an air-fuel mixture is stopped. A throttle opening reduction control is configured to control the throttle valve 23 such that a throttle opening is reduced. An ignition timing change control is configured to execute a spark ignition of fuel at a timing earlier or later than a normal ignition timing. An air-fuel mixture leaning control is configured to control the throttle valve 23 and/or the fuel injection apparatus 22 such that a proportion of fuel in the air-fuel mixture is reduced. Also, it is acceptable for a cylinder targeted for an ignition cut and/or a fuel injection cut to be a designated cylinder or a cylinder synchronized with a timing at which the suppression control is executed. It is also acceptable for the ignition cut control and/or the fuel injection cut control to be executed only once, continuously, or intermittently, for example.
Although in the first preferred embodiment, the change rate of the engine rotational speed preferably is an amount of change of the engine rotational speed per prescribed unit of time, it is also acceptable for the change rate to be a ratio of engine rotational speeds per prescribed unit of time. For example, it is acceptable for the change rate RN of the engine rotational speed to be expressed using the Equation 2 below.
RN=N(n)/N(n−1) Equation 2
In the first preferred embodiment, a suppression control preferably is executed with respect to at least three cylinders when a change rate RN of the engine rotational speed is smaller than a prescribed value and the engine rotational speed N is larger than a rotational speed Nb. However, it is also acceptable to configure the control such that the suppression control is not executed when the change rate RN of the engine rotational speed is smaller than a prescribed value even if the engine rotational speed N is larger than the rotational speed Nb. For example, if the rotational speed Nb is a value smaller than Na1, then it is possible for the suppression control not to be executed when the change rate RN of the engine rotational speed is smaller than the prescribed value even if the engine rotational speed N is larger than the rotational speed Nb.
Although in the first preferred embodiment, the rotational speed Nb preferably is equal to the value Na3, it is acceptable for the rotational speed Nb to have a value different from Na3. Although in the second preferred embodiment, the rotational speed Nc preferably is equal to the value Na3, it is acceptable for the rotational speed Nc to have a value different from Na3.
In the first preferred embodiment, the engine rotational speed preferably is computed based on a rotation time per rotational angle of 180 degrees. However, the rotational angle used to compute the engine rotational speed is not limited to 180 degrees. In the second preferred embodiment, the first computed rotational speed Nregular preferably is computed based on a rotation time per rotational angle of 180 degrees. However, the rotational angle used to compute the first computed rotational speed Nregular is not limited to 180 degrees. In the second preferred embodiment, the second computed rotational speed Ninstant preferably is computed based on a rotation time per rotational angle of 30 degrees. However, the rotational angle used to compute the second computed rotational speed Ninstant is not limited to 30 degrees.
Another suppression control that includes a continuous over-revving state determination and can be executed in conjunction with the suppression control of the first preferred embodiment or the second preferred embodiment will now be explained.
In step S301, the ECU 21 sets a repeat counter to a prescribed value. In step S302, the ECU 21 determines if the engine rotational speed has exceeded a prescribed reversal threshold value. The reversal threshold value is set to a rotational speed larger than a maximum rotational speed normally used by a user. The reversal threshold value can be set to, for example, a value equal to the value Na1 but it is acceptable for the reversal threshold value to be a value other than Na1. The reversal threshold value is preferably larger than a maximum rotational speed normally used by a user and smaller than the aforementioned value Na1. A maximum rotational speed normally used by a user is a maximum rotational speed in a case in which the watercraft is equipped with an appropriate size of an outboard boat motor and a propeller. Also, the expression “the engine rotational speed passed the reversal threshold value” refers to both a situation in which the engine rotational speed has risen from a value smaller than the reversal threshold value to a value larger than the reversal threshold value and a situation in which the engine rotational speed has decreased from a value larger than the reversal threshold value to a value smaller than the reversal threshold value. However, it is also acceptable if the expression “the engine rotational speed passed a prescribed reversal threshold value” refers to either a situation in which the engine rotational speed has risen from a value smaller than the reversal threshold value to a value larger than the reversal threshold value or a situation in which the engine rotational speed has decreased from a value larger than the reversal threshold value to a value smaller than the reversal threshold value.
If it is determined in step S302 that the engine rotational speed has passed a prescribed reversal threshold value, then the ECU 21 proceeds to step S303. In step S303, the ECU 21 subtracts 1 from the value of the counter. In step S304, the ECU 21 determines if the value of the counter is zero. If the value of the counter is not zero, then the ECU 21 returns to step S302. If the value of the counter has reached zero, then the ECU 21 proceeds to step S305 and detects that a continuous over-revving state exists. Then, in step S306, the ECU 21 executes a limitation of the throttle opening degree. More specifically, the ECU 21 gradually reduces the throttle opening degree.
It is acceptable for the ECU 21 to execute step S301 after it has executed step S306. In other words, it is acceptable to use execution of the limitation of the throttle opening as a condition for resetting the counter. It is also acceptable to reset the counter when the engine 5 is started.
Even when a suppression control according to the first preferred embodiment or the second preferred embodiment is used, a suppression control including a continuous over-revving state determination similar to that just described is effective in situations where over-revving occurs continuously. For example, there are situations in which the propeller 13 is raised above the water surface due to the watercraft propulsion device 1 being tilted with respect to a hull of the watercraft. There are also situations in which the propeller 13 attached to the watercraft propulsion device 1 is not an appropriate for the size of the hull. In such situations, with only a suppression control according to the first preferred embodiment and the second preferred embodiment, the engine rotational speed will decrease temporarily but it will increase again when the suppression control is ended. The engine rotational speed will decrease temporarily when the suppression control is executed again, afterwards, and the engine rotational speed will increase again. Thus, the engine 5 will enter a state of continuous over-revving.
As explained previously, by executing a suppression control that includes a continuous over-revving determination, the control can prevent over-revving from occurring repetitively. It is also acceptable to configure the control such that if a continuous over-revving state is detected in step S305, then in step S306 the ECU 21 will issue a warning to an operator instead of limiting the throttle opening degree. In such a case, the watercraft propulsion device 1 is further equipped with a notifying device 27 as shown in
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2011-226168 | Oct 2011 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 13461825 | May 2012 | US |
Child | 13872249 | US |